Thalassocella blandensis gen. nov., sp. nov., a novel member of the family Cellvibrionaceae

Int J Syst Evol Microbiol. 2020 Feb;70(2):1231-1239. doi: 10.1099/ijsem.0.003906.

Abstract

Strain ISS155T, isolated from surface Mediterranean seawater, has cells that are Gram-reaction-negative, motile, strictly aerobic chemoorganotrophic, oxidase-positive, unable to reduce nitrate to nitrite, and able to grow with cellulose as the sole carbon and energy source. It is mesophilic, neutrophilic, slightly halophilic and has a requirement for sodium and magnesium ions. Its 16S rRNA gene sequence places the strain among members of Cellvibrionaceae, in the Gammaproteobacteria, with Agarilytica rhodophyticola 017T as closest relative (94.3 % similarity). Its major cellular fatty acids are C18 : 1, C16 : 0 and C16 : 1; major phospholipids are phosphatidyl glycerol, phosphatidyl ethanolamine and an unidentified lipid, and the major respiratory quinone is Q8. The genome size is 6.09 Mbp and G+C content is 45.2 mol%. A phylogenomic analysis using UBCG merges strain ISS155T in a clade with A. rhodophyticola, Teredinibacter turnerae, Saccharophagus degradans and Agaribacterium haliotis type strain genomes, all of them possessing a varied array of carbohydrate-active enzymes and the potential for polysaccharide degradation. Average amino acid identity indexes determined against available Cellvibrionaceae type strain genomes show that strain ISS155T is related to them by values lower than 60 %, with a maximum of 58 % to A. rhodophyticola 017T and 57 % to T. turnerae T7902T and S. degradans 2-40T. These results, together with the low 16S rRNA gene sequence similarities and differences in phenotypic profiles, indicate that strain ISS155T represents a new genus and species in Cellvibrionaceae, for which we propose the name Thalassocella blandensis gen. nov., sp. nov., and strain ISS155T (=CECT 9533T=LMG 31237T) as the type strain.

Keywords: AAI; ANI; Agarilytica; Cellvibrionaceae; Teredinibacter; Thalassocella; marine bacteria.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Mediterranean Sea
  • Phospholipids / chemistry
  • Phyllobacteriaceae / classification*
  • Phyllobacteriaceae / isolation & purification
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Seawater / microbiology*
  • Sequence Analysis, DNA
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • ubiquinone 8