Age-Onset Phosphorylation of a Minor Actin Variant Promotes Intestinal Barrier Dysfunction

Dev Cell. 2019 Dec 2;51(5):587-601.e7. doi: 10.1016/j.devcel.2019.11.001.

Abstract

Age-associated decay of intercellular interactions impairs the cells' capacity to tightly associate within tissues and form a functional barrier. This barrier dysfunction compromises organ physiology and contributes to systemic failure. The actin cytoskeleton represents a key determinant in maintaining tissue architecture. Yet, it is unclear how age disrupts the actin cytoskeleton and how this, in turn, promotes mortality. Here, we show that an uncharacterized phosphorylation of a low-abundant actin variant, ACT-5, compromises integrity of the C. elegans intestinal barrier and accelerates pathogenesis. Age-related loss of the heat-shock transcription factor, HSF-1, disrupts the JUN kinase and protein phosphatase I equilibrium which increases ACT-5 phosphorylation within its troponin binding site. Phosphorylated ACT-5 accelerates decay of the intestinal subapical terminal web and impairs its interactions with cell junctions. This compromises barrier integrity, promotes pathogenesis, and drives mortality. Thus, we provide the molecular mechanism by which age-associated loss of specialized actin networks impacts tissue integrity.

Keywords: HSF-1; actin; aging; barrier; intestine; junctions; kinase; pathogenesis; phosphorylation; stress.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Actins / chemistry
  • Actins / genetics
  • Actins / metabolism*
  • Aging / metabolism*
  • Aging / pathology
  • Animals
  • Binding Sites
  • Caenorhabditis elegans
  • Caenorhabditis elegans Proteins / chemistry
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism*
  • Intercellular Junctions / metabolism
  • Intestinal Mucosa / growth & development
  • Intestinal Mucosa / metabolism*
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Phosphorylation
  • Protein Phosphatase 1 / metabolism
  • Transcription Factors / metabolism
  • Troponin / metabolism

Substances

  • ACT-5 protein, C elegans
  • Actins
  • Caenorhabditis elegans Proteins
  • Transcription Factors
  • Troponin
  • heat shock factor-1, C elegans
  • JNK Mitogen-Activated Protein Kinases
  • KGB-1 protein, C elegans
  • Protein Phosphatase 1