Synchronization of Independent Neural Ensembles in Human EEG during Choice Tasks

Behav Sci (Basel). 2019 Nov 28;9(12):132. doi: 10.3390/bs9120132.


During behavioral experiments, humans placed in a situation of having to choose between a more valuable but risky reward and a less valuable but guaranteed reward make their decisions in accordance with external situational factors and individual characteristics, such as inclination to risk or caution. In such situations, humans can be divided into "risk-inclined" and "risk-averse" (or "cautious") subjects. In this work, characteristics of EEG rhythms, such as phase-phase relationships and time lags between rhythms, were studied in pairs of alpha-beta and theta-beta rhythms. Phase difference can also be expressed as a time lag. It has been suggested that statistically significant time lags between rhythms are due to the combined neural activity of anatomically separate, independent (in activation/inhibition processes) ensembles. The extents of synchronicity between rhythms were compared as percentages between risk-inclined and risk-averse subjects. The results showed that synchronicity in response to stimuli was more often observed in pairs of alpha-beta rhythms of risk-averse subjects compared with risk-inclined subjects during the choice of a more valuable but less probable reward. In addition, significant differences in the percentage ratio of alpha and beta rhythms were revealed between (i) cases of synchronization without long time lags and (ii) cases with long time lags between rhythms (from 0.08 to 0.1 s).

Keywords: EEG rhythms; anxiety; behavior; choice; impulsivity; risk; time lag.