Colorectal cancer is a leading cause of cancer that may metastasize. KRAS gene sequence of exon 2 should be examined for identification of patients that can be treated with anti-EGFR. The aim of the present study was to evaluate the efficacy of high-resolution melting (HRM) to detect KRAS mutations in colorectal cancer (CRC) tumors. The exon 2 of KRAS was amplified from 47 adenocarcinoma CRC tissues. The tumors were subjected to high-resolution melt using quantitative PCR to identify wild-type and mutant subgroups. The results were compared to the mutations detected by next-generation sequences (NGS). The study included 47 patients, with a mean age of 62 years, of whom 24 patients were male. Most of the patients had stage II or stage III tumors. The mean melting temperatures for the wild-type and mutated group at exon 2 were 78.13˚C and 77.87˚C, respectively (P<0.001, 95% CI = 0.11-0.4). The sensitivity and specificity of high-resolution melting were 83.3 and 96.6%, respectively, with a high concordance between the NGS and HRM methods for detecting KRAS mutation in exon 2 (ĸ = 0.816; P=0.625). Thus, HRM could be used as an alternative method for detecting KRAS mutations in colorectal cancer tissue.
Keywords: DNA melting; DNA mutational analysis; K-ras gene; colorectal cancers; quantitative PCR.
Copyright © 2019, Spandidos Publications.