Objectives: Members of the Burkholderia cepacia complex (Bcc) have been isolated from various environmental and clinical samples and reportedly pose a threat to human health. Here we examine the draft genome sequence of Burkholderia sp. LS-044, an antibiotic-resistant endophytic strain affiliated to the Bcc (ST895) inhabiting rice (Oryza sativa ssp. japonica cv. Tainung 71) root.
Methods: Antimicrobial susceptibility of LS-044 was evaluated comparatively with other Burkholderia sp. (CC-Al74 and CC-3XP9) using commercial ATB PSE 5 test strips. The genome of LS-044 was sequenced using an Illumina MiSeq platform. Plant probiotic and antimicrobial resistance genes were screened by Rapid Annotation using Subsystem Technology (RAST), CARD 2017, NCBI and/or UniProt.
Results: Plant-associated members of Bcc (LS-044 and CC-Al74) exhibited greater resistance to the majority of antibiotics tested. The draft genome sequence of LS-044 contained 8.78 Mbp in 62 contigs having a G + C content of 66.5%, 8868 coding sequences and 75 RNAs. The genome harboured genes coding for LysR-type β-lactamase transcription regulator, classes A, C and D β-lactamases, several metal-dependent β-lactamases, antibiotic efflux proteins, and proteins conferring resistance to colistin, streptothricin, colicin and fluoroquinolones. Similarly, it also possessed genes for copper homeostasis, copper-cobalt-zinc-cadmium-chromium resistance and reduction of mercury. Genes involved in flagellar motility, hydrolysis of murein and chitin, production of siderophore and auxin, and metabolism of aromatic compounds were also found.
Conclusion: Genome sequence data revealed an interlinked occurrence of plant probiotic traits and antimicrobial resistance in the rice root endophyte LS-044.
Keywords: Antifungal; Multilocus sequence typing; Plant probiotic; Streptothricin; β-Lactamase.
Copyright © 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. All rights reserved.