Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 8 (4)

Antibody Structure and Function: The Basis for Engineering Therapeutics

Affiliations
Review

Antibody Structure and Function: The Basis for Engineering Therapeutics

Mark L Chiu et al. Antibodies (Basel).

Abstract

Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure-function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.

Keywords: antibody engineering; therapeutic biologics.

Conflict of interest statement

The authors declare no conflicts of interest. M.L.C., A.T., and G.L.G. are employees of Janssen Laboratories.

Figures

Figure 1
Figure 1
A ribbon representation of an intact IgG, Protein Data Bank (PDB) id: 1igt [11], which is a mouse IgG2a isotype. The light chains are green, the heavy chains are cyan and blue, the glycan is orange sticks, and the interchain disulfides are yellow sticks.
Figure 2
Figure 2
The immunoglobulin fold. The left ribbon image (cyan and red) of the heavy-chain variable (VH) domain illustrates the V domain immunoglobulin folding pattern (VH of Fab 388, PDBid 5i1a) [12]. The V domain complementarity-determining regions (CDRs) are shown in red. The right ribbon image (green) illustrates the similar folding pattern of a typical C domain (CL of Fab 5844, PDBid: 5i18 [12].
Figure 3
Figure 3
The Ab Fv region with the VH in cyan and the VL in green. The Martin CDRs are highlighted in red (Fv of Fab 388, PDBid: 5i1a) [12].
Figure 4
Figure 4
The structural features of the human IgG1 Fc and how they impact functionality. The Fc is represented by a ribbon image of the Fc structure (PDBid: 3ave [65]). The two heavy chains are shown in blue and cyan; the carbohydrate is represented by orange sticks.
Figure 5
Figure 5
(A) Schematic representation of the most abundant recombinant N-linked oligosaccharide from human IgG Asn 297 (G2S2F) with glycosidic linkages. A similar representation of recombinant human IgG1 G2S2F is shown. The monomeric saccharides are shown as blue squares as N acetyl glucosamine; green circles as mannose; yellow circles as galactose; red squares as fucose; and purple rhombi as sialic acid or N acetyl neuraminic acid. (B) The glycosidic linkage numbers for representative oligosaccharides. The numbering of the glycosidic linkages are shown for oligosaccharides found in IgG molecules. The 1-4 N acetyl glucosamine can be found in human IgG structures. (C) Major species of N-linked oligosaccharides found in recombinant IgGs expressed in Chinese hamster ovary (CHO) cells may vary considerably by the addition of other sugar residues, such as sialic acids, N-acetylglucosamines, and galactose.
Figure 5
Figure 5
(A) Schematic representation of the most abundant recombinant N-linked oligosaccharide from human IgG Asn 297 (G2S2F) with glycosidic linkages. A similar representation of recombinant human IgG1 G2S2F is shown. The monomeric saccharides are shown as blue squares as N acetyl glucosamine; green circles as mannose; yellow circles as galactose; red squares as fucose; and purple rhombi as sialic acid or N acetyl neuraminic acid. (B) The glycosidic linkage numbers for representative oligosaccharides. The numbering of the glycosidic linkages are shown for oligosaccharides found in IgG molecules. The 1-4 N acetyl glucosamine can be found in human IgG structures. (C) Major species of N-linked oligosaccharides found in recombinant IgGs expressed in Chinese hamster ovary (CHO) cells may vary considerably by the addition of other sugar residues, such as sialic acids, N-acetylglucosamines, and galactose.
Figure 6
Figure 6
The hinge sequences of human IgG isotopes illustrating the upper, core, and lower hinge regions. Sequence numbers are given for the IgG1 hinge.
Figure 7
Figure 7
Collier de Perles presentation [105] of VH showing CDRs (red), Vernier zone residues (gray), and VH–VL interface residues (green). Amino acids correspond to human germline IGHV1-69*01 with the Chothia numbering of residues.
Figure 8
Figure 8
Collier de Perles presentation [105] of VL showing CDRs (red), Vernier zone residues (gray), and VH–VL interface residues (green). Amino acids correspond to human germline IGKV4-1*01 with the Chothia numbering of residues.
Figure 9
Figure 9
Schematic representation of bispecific and multispecific molecules. Domains 1–6 (D1–D6) can represent binding domains that can include Fab, scFv, DART®, VHH, and other alternative binding motifs. Linker sequences (L1–L6) can represent distinct linker regions. The Fc region can represent the IgG Fc region or be replaced with another other motif for modulation of the FcγR, FcRn, and PK profile. A standard mAb has D1 = D2, L1 = L2, and Fc = IgG Fc region.

Similar articles

See all similar articles

References

    1. Kaplon H., Reichert J.M. Antibodies to watch in 2019. mAbs. 2019;11:219–238. doi: 10.1080/19420862.2018.1556465. - DOI - PMC - PubMed
    1. Kaplon H., Reichert J.M. Antibodies to watch in 2018. mAbs. 2018;10:183–203. doi: 10.1080/19420862.2018.1415671. - DOI - PMC - PubMed
    1. Gilliland G.L., Luo J., Vafa O., Almagro J.C. Leveraging SBDD in protein therapeutic development: Antibody engineering. Methods Mol. Biol. 2012;841:321–349. - PubMed
    1. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. - DOI - PMC - PubMed
    1. Padlan E.A. Structural basis for the specificity of antibody-antigen reactions and structural mechanisms for the diversification of antigen-binding specificities. Q. Rev. Biophys. 1977;10:35–65. doi: 10.1017/S0033583500000135. - DOI - PubMed
Feedback