Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways

Nat Rev Neurol. 2020 Jan;16(1):30-42. doi: 10.1038/s41582-019-0281-2. Epub 2019 Dec 11.


The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Alzheimer Disease / pathology
  • Amyloid beta-Peptides / genetics
  • Amyloid beta-Peptides / metabolism*
  • Brain / metabolism*
  • Brain / pathology
  • Cerebral Amyloid Angiopathy / genetics
  • Cerebral Amyloid Angiopathy / metabolism*
  • Cerebral Amyloid Angiopathy / pathology
  • Humans
  • Plaque, Amyloid / genetics
  • Plaque, Amyloid / metabolism
  • Plaque, Amyloid / pathology
  • Signal Transduction / physiology*


  • Amyloid beta-Peptides