Territorial landscapes: incorporating density-dependence into wolf habitat selection studies

R Soc Open Sci. 2019 Nov 20;6(11):190282. doi: 10.1098/rsos.190282. eCollection 2019 Nov.

Abstract

Habitat selection is a process that spans space, time and individual life histories. Ecological analyses of animal distributions and preferences are most accurate when they account for inherent dynamics of the habitat selection process. Strong territoriality can constrain perception of habitat availability by individual animals or groups attempting to colonize or establish new territory. Because habitat selection is a function of habitat availability, broad-scale changes in habitat availability or occupancy can drive density-dependent habitat functional responses. We investigated density-dependent habitat selection over a 19-year period of grey wolf (Canis lupus) recovery in Michigan, USA, using a generalized linear mixed model framework to develop a resource selection probability function (RSPF) with habitat coefficients conditioned on random effects for wolf packs and random year intercepts. In addition, we allowed habitat coefficients to vary as interactions with increasing wolf density over space and time. Results indicated that pack presence was driven by factors representing topography, human development, winter prey availability, forest structure, roads, streams and snow. Importantly, responses to many of these predictors were density-dependent. Spatio-temporal dynamics and population changes can cause considerable variation in wildlife-habitat relationships, possibly confounding interpretation of conventional habitat selection models. By incorporating territoriality into an RSPF analysis, we determined that wolves' habitat use in Michigan shifted over time, for example, exhibiting declining responses to winter prey indices and switching from positive to negative responses with respect to stream densities. We consider this an important example of a habitat functional response in wolves, driven by colonization, density-dependence and changes in occupancy during a time period of range expansion and population increase.

Keywords: carnivores; density-dependence; density-dependent habitat selection; habitat selection functional response; recolonization; resource selection function.

Associated data

  • figshare/10.6084/m9.figshare.c.4728689