Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Dec 13;44(1):28.
doi: 10.1007/s10916-019-1486-z.

Classification of Depression Patients and Normal Subjects Based on Electroencephalogram (EEG) Signal Using Alpha Power and Theta Asymmetry

Affiliations

Classification of Depression Patients and Normal Subjects Based on Electroencephalogram (EEG) Signal Using Alpha Power and Theta Asymmetry

Shalini Mahato et al. J Med Syst. .

Abstract

Depression or Major Depressive Disorder (MDD) is a mental illness which negatively affects how a person thinks, acts or feels. MDD has become a major disease affecting millions of people presently. The diagnosis of depression is questionnaire based and is not based on any objective criteria. In this paper, feature extracted from EEG signal are used for the diagnosis of depression. Alpha, alpha1, alpha2, beta, delta and theta power and theta asymmetry was used as feature. Alpha1, alpha2 along with theta asymmetry was also used as a feature. Multi-Cluster Feature Selection (MCFS) was used for feature selection when feature combination was used. The classifiers used were Support Vector Machine (SVM), Logistic Regression (LR), Naïve-Bayesian (NB) and Decision Tree (DT). Alpha2 showed higher classification accuracy than alpha1 and alpha power in all applied classifier. From t-test it was found that there was a significant difference in the theta power of left and right hemisphere of normal subjects, but there was no significant difference in depression patients. Average theta asymmetry in normal subjects is higher than MDD patients but the difference in theta asymmetry in normal subjects and MDD patients is not significant. The combination of alpha2 and theta asymmetry showed the highest classification accuracy of 88.33% in SVM.

Keywords: Logistic regression (LR); Major depressive disorder (MDD); Multi-cluster feature selection (MCFS); Naïve-Bayesian (NB) and decision tree (DT); Support vector machine (SVM).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Comput Methods Programs Biomed. 2013 Mar;109(3):339-45 - PubMed
    1. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7517-20 - PubMed
    1. Clin Neurophysiol. 2010 Mar;121(3):281-9 - PubMed
    1. Biol Psychol. 2014 May;99:198-208 - PubMed
    1. Psychophysiology. 2014 May;51(5):446-55 - PubMed

LinkOut - more resources