Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
- PMID: 31835284
- PMCID: PMC6909142
- DOI: 10.1016/j.nicl.2019.102061
Automatic extraction of the intracranial volume in fetal and neonatal MR scans using convolutional neural networks
Abstract
MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain development requires automatic brain tissue segmentation that is typically preceded by segmentation of the intracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and large variation in the field of view make ICV segmentation a challenging task. We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength, image acquisition plane, image resolution), infant age (23-45 weeks post menstrual age), and pathology (posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue segmentation in fetal and neonatal brain MR scans.
Keywords: Brain extraction; Brain segmentation; Deep learning; Fetal MRI; Intracranial volume segmentation; Neonatal MRI; Skull stripping.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
There is no conflict between authors.
Figures
Similar articles
-
Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.Magn Reson Imaging. 2019 Dec;64:77-89. doi: 10.1016/j.mri.2019.05.020. Epub 2019 Jun 7. Magn Reson Imaging. 2019. PMID: 31181246
-
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI.Neuroimage. 2020 Feb 1;206:116324. doi: 10.1016/j.neuroimage.2019.116324. Epub 2019 Nov 6. Neuroimage. 2020. PMID: 31704293 Free PMC article.
-
Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT.Neuroimage. 2021 Dec 1;244:118606. doi: 10.1016/j.neuroimage.2021.118606. Epub 2021 Sep 25. Neuroimage. 2021. PMID: 34571160
-
Review on deep learning fetal brain segmentation from Magnetic Resonance images.Artif Intell Med. 2023 Sep;143:102608. doi: 10.1016/j.artmed.2023.102608. Epub 2023 Jun 10. Artif Intell Med. 2023. PMID: 37673558 Review.
-
VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.Neuroimage. 2018 Apr 15;170:446-455. doi: 10.1016/j.neuroimage.2017.04.041. Epub 2017 Apr 23. Neuroimage. 2018. PMID: 28445774 Review.
Cited by
-
Automated neonatal nnU-Net brain MRI extractor trained on a large multi-institutional dataset.Sci Rep. 2024 Feb 26;14(1):4583. doi: 10.1038/s41598-024-54436-8. Sci Rep. 2024. PMID: 38403673 Free PMC article.
-
What is the future of artificial intelligence in obstetrics? A qualitative study among healthcare professionals.BMJ Open. 2023 Oct 24;13(10):e076017. doi: 10.1136/bmjopen-2023-076017. BMJ Open. 2023. PMID: 37879682 Free PMC article.
-
Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images.Radiol Phys Technol. 2023 Sep;16(3):373-383. doi: 10.1007/s12194-023-00728-z. Epub 2023 Jun 8. Radiol Phys Technol. 2023. PMID: 37291372
-
Applications of artificial intelligence in obstetrics.Ultrasonography. 2023 Jan;42(1):2-9. doi: 10.14366/usg.22063. Epub 2022 Jul 20. Ultrasonography. 2023. PMID: 36588179 Free PMC article.
-
Semi-automatic segmentation of the fetal brain from magnetic resonance imaging.Front Neurosci. 2022 Nov 11;16:1027084. doi: 10.3389/fnins.2022.1027084. eCollection 2022. Front Neurosci. 2022. PMID: 36440277 Free PMC article.
References
-
- Alderliesten T., de Vries L.S., Staats L., van Haastert I.C., Weeke L., Benders M.J., Koopman-Esseboom C., Groenendaal F. MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia. Arch. Dis. Child. Fetal Neonatal Edition. 2017;102(2):F147–F152. - PubMed
-
- Anquez J., Angelini E.D., Bloch I. The IEEE International Symposium on Biomedical Imaging (ISBI) IEEE; 2009. Automatic segmentation of head structures on fetal MRI; pp. 109–112.
-
- Benders M.J., van der Aa N.E., Roks M., van Straaten H.L., Isgum I., Viergever M.A., Groenendaal F., de Vries L.S., van Bel F. Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J. Pediatr. 2014;164(3):481–486. - PubMed
-
- Brouwer M.J., De Vries L.S., Kersbergen K.J., Van Der Aa N.E., Brouwer A.J., Viergever M.A., Išgum I., Han K.S., Groenendaal F., Benders M.J. Effects of posthemorrhagic ventricular dilatation in the preterm infant on brain volumes and white matter diffusion variables at term-equivalent age. J. Pediatr. 2016;168:41–49. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
