Rumex japonicus Houtt.: A phytochemical, pharmacological, and pharmacokinetic review
- PMID: 31849133
- DOI: 10.1002/ptr.6601
Rumex japonicus Houtt.: A phytochemical, pharmacological, and pharmacokinetic review
Abstract
Rumex japonicus Houtt. (RJH-Yang Ti) RJH has been used as a folk medicine in East Asian countries for thousands of years. It has a wide range of therapeutic effects in terms of anti-microorganic, anti-oxidant, anti-inflammatory, and antitumor effects. Therefore, it is urgent to thoroughly review the existing knowledge for this herb from phytochemical, pharmacological, and pharmacokinetic perspectives. "Yang Ti" and its English, botanical and pharmaceutical names used as keywords to perform database search which included the Encyclopaedia of traditional Chinese Medicines, PubMed, EMBASE, AMED, CINAHL, Cochrane Library, MEDLINE, Science Direct, Scopus, Web of Science, and China Network Knowledge Infrastructure. Forty-five compounds identified from RJH. Besides, the therapeutic effects of RJH have been summarized as well. The root of RJH contains derivatives of anthraquinones, phytosterols, nepodin, oxanthrone c-glycosides, phenolic acid, cinnamic acid, flavonoid, epoxynaphthoquinol, triterpenoids, methoxynaphthalene, trihydroxybenzene, anthracene-9,10-dione, and other compounds. The extract of RJH and its chemical compounds showed the potentials as a complementary agent to exert antioxidant, antimicrobial, antisepsis, anticancer, anti-haematological disease, anti-dermatological disease, and antidiabetic activities. For the record, there is no study conducted on RJH regarding its pharmacokinetic aspect. Notably, Emodin may require additional attention due to its multiple organ toxicity concerns.
Keywords: Rumex japonicus Houtt; Yang Ti; pharmacokinetic; pharmacology; phytochemistry; review.
© 2019 John Wiley & Sons, Ltd.
Similar articles
-
Inhibition of Jurkat T Cell Proliferation by Active Components of Rumex japonicus Roots Via Induced Mitochondrial Damage and Apoptosis Promotion.J Microbiol Biotechnol. 2020 Dec 28;30(12):1885-1895. doi: 10.4014/jmb.2007.07018. J Microbiol Biotechnol. 2020. PMID: 33144550 Free PMC article.
-
The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology.J Ethnopharmacol. 2015 Dec 4;175:198-228. doi: 10.1016/j.jep.2015.09.001. Epub 2015 Sep 14. J Ethnopharmacol. 2015. PMID: 26384001 Review.
-
Inhibitory effects of Rumex japonicus Houtt. on the development of atopic dermatitis-like skin lesions in NC/Nga mice.Br J Dermatol. 2006 Jul;155(1):33-8. doi: 10.1111/j.1365-2133.2006.07303.x. Br J Dermatol. 2006. PMID: 16792749
-
Ophiopogon japonicus--A phytochemical, ethnomedicinal and pharmacological review.J Ethnopharmacol. 2016 Apr 2;181:193-213. doi: 10.1016/j.jep.2016.01.037. Epub 2016 Jan 27. J Ethnopharmacol. 2016. PMID: 26826325 Review.
-
Inhibitory effect of Rumex Japonicus Houtt on the porphyrin photooxidative reaction.J Dermatol. 2000 Dec;27(12):761-8. doi: 10.1111/j.1346-8138.2000.tb02278.x. J Dermatol. 2000. PMID: 11211791
Cited by
-
Rumex japonicus Houtt. Extract Suppresses Colitis-Associated Colorectal Cancer by Regulating Inflammation and Tight-Junction Integrity in Mice.Front Pharmacol. 2022 Jul 5;13:946909. doi: 10.3389/fphar.2022.946909. eCollection 2022. Front Pharmacol. 2022. PMID: 35865942 Free PMC article.
-
Rumex japonicus Houtt. Protects Dopaminergic Neurons by Regulating Mitochondrial Function and Gut-Brain Axis in In Vitro and In Vivo Models of Parkinson's Disease.Antioxidants (Basel). 2022 Jan 10;11(1):141. doi: 10.3390/antiox11010141. Antioxidants (Basel). 2022. PMID: 35052645 Free PMC article.
-
Inhibition of Jurkat T Cell Proliferation by Active Components of Rumex japonicus Roots Via Induced Mitochondrial Damage and Apoptosis Promotion.J Microbiol Biotechnol. 2020 Dec 28;30(12):1885-1895. doi: 10.4014/jmb.2007.07018. J Microbiol Biotechnol. 2020. PMID: 33144550 Free PMC article.
References
REFERENCES
-
- Chen, M., Wang, D., Feng, Y., & Yang, W. (2009). A new anthraquinone from roots of Rumex japonicus. China Journal of Chinese Materia Medica, 34(17), 2194-2196.
-
- Chen, Q. H., He, H. S., Xiong, L., & Li, P. (2014). A novel GC-MS method for determination of chrysophanol in rat plasma and tissues: Application to the pharmacokinetics, tissue distribution and plasma protein binding studies. Journal of Chromatography B, 973, 76-83. https://doi.org/10.1016/j.jchromb.2014.10.011
-
- Chen, X., Guo, H., Li, F. X., & Fan, D. (2017). Physcion 8-O-β-glucopyranoside suppresses the metastasis of breast cancer in vitro and in vivo by modulating DNMT1. Pharmacological Reports, 69(1), 36-44.
-
- Ding, Z., Xu, F., Tang, J., Li, G., Jiang, P., Tang, Z., & Wu, H. (2016). Physcion 8-O-beta-glucopyranoside prevents hypoxia-induced epithelial-mesenchymal transition in colorectal cancer HCT116 cells by modulating EMMPRIN. Neoplasma, 63(3), 351-361. https://doi.org/10.4149/303_150723n405
-
- Dong, X., Fu, J., Yin, X., Cao, S., Li, X., Lin, L., & Ni, J. (2016). Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytotherapy Research, 30(8), 1207-1218. https://doi.org/10.1002/ptr.5631
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
