Development, Testing, Parameterization, and Calibration of a Human Physiologically Based Pharmacokinetic Model for the Plasticizer, Hexamoll® Diisononyl-Cyclohexane-1, 2-Dicarboxylate Using In Silico, In Vitro, and Human Biomonitoring Data
- PMID: 31849656
- PMCID: PMC6897292
- DOI: 10.3389/fphar.2019.01394
Development, Testing, Parameterization, and Calibration of a Human Physiologically Based Pharmacokinetic Model for the Plasticizer, Hexamoll® Diisononyl-Cyclohexane-1, 2-Dicarboxylate Using In Silico, In Vitro, and Human Biomonitoring Data
Abstract
A physiologically based pharmacokinetic model for Hexamoll® diisononyl-cyclohexane-1, 2-dicarboxylate was developed to interpret the biokinetics in humans after single oral doses. The model was parameterized with in vitro and in silico derived parameters and uncertainty and sensitivity analysis was used during the model development process to assess structure, biological plausibility and behavior prior to simulation and analysis of human biological monitoring data. The model provided good simulations of the urinary excretion (Curine) of two metabolites; cyclohexane-1,2-dicarboxylic acid mono hydroxyisononyl ester (OH-MINCH) and cyclohexane-1, 2-dicarboxylic acid mono carboxyisononyl ester (cx-MINCH) from the biotransformation of mono-isononyl-cyclohexane-1, 2-dicarboxylate (MINCH), the monoester metabolite of di-isononyl-cyclohexane-1,2-dicarboxylate. However, good simulations could be obtained, with and without, a lymphatic compartment. Selection of an appropriate model structure was informed by sensitivity analysis which could identify and quantify the contribution to variability in Curine by parameters, such as, the fraction of oral dose that directly entered the lymphatic compartment and therefore by-passed the liver and the fraction of MINCH bio-transformed to cx-MINCH and OH-MINCH. By constraining these parameters within biologically plausible limits the presence of a lymphatic compartment was deemed an important component of model structure. Furthermore, the use of sensitivity analysis is important in the evaluation of uncertainty around in silico derived parameters. By quantifying their impact on model output sufficient confidence in the use of a model should be afforded. This type of approach could expand the use of physiologically based pharmacokinetic models since parameterization with in silico techniques allows for rapid model development. This in turn could assist in reducing the use of animals in toxicological evaluations by enhancing the utility of "read across" techniques.
Keywords: Hexamoll®; PBPK; biomonitoring; human; in silico; in vitro; plasticizer.
Copyright © 2019 McNally, Sams and Loizou.
Figures
Similar articles
-
Development, Testing, Parameterisation and Calibration of a Human PBPK Model for the Plasticiser, Di-(2-propylheptyl) Phthalate (DPHP) Using in Silico, in vitro and Human Biomonitoring Data.Front Pharmacol. 2021 Sep 2;12:692442. doi: 10.3389/fphar.2021.692442. eCollection 2021. Front Pharmacol. 2021. PMID: 34539393 Free PMC article.
-
Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB).Int J Hyg Environ Health. 2019 Sep;222(8):1084-1092. doi: 10.1016/j.ijheh.2019.07.011. Epub 2019 Aug 1. Int J Hyg Environ Health. 2019. PMID: 31378638
-
Metabolism of the plasticizer and phthalate substitute diisononyl-cyclohexane-1,2-dicarboxylate (DINCH(®)) in humans after single oral doses.Arch Toxicol. 2013 May;87(5):799-806. doi: 10.1007/s00204-012-0990-4. Epub 2012 Dec 1. Arch Toxicol. 2013. PMID: 23203454
-
Derivation of an oral reference dose (RfD) for the nonphthalate alternative plasticizer 1,2-cyclohexane dicarboxylic acid, di-isononyl ester (DINCH).J Toxicol Environ Health B Crit Rev. 2014;17(2):63-94. doi: 10.1080/10937404.2013.876288. J Toxicol Environ Health B Crit Rev. 2014. PMID: 24627975 Review.
-
In Vitro-In Vivo Correlation Using In Silico Modeling of Physiological Properties, Metabolites, and Intestinal Metabolism.Curr Drug Metab. 2017;18(11):973-982. doi: 10.2174/1389200218666171031124347. Curr Drug Metab. 2017. PMID: 29086683 Review.
Cited by
-
Development, testing, parameterisation, and calibration of a human PBK model for the plasticiser, di (2-ethylhexyl) adipate (DEHA) using in silico, in vitro and human biomonitoring data.Front Pharmacol. 2023 Mar 23;14:1165770. doi: 10.3389/fphar.2023.1165770. eCollection 2023. Front Pharmacol. 2023. PMID: 37033641 Free PMC article.
-
Development, testing, parameterisation, and calibration of a human PBPK model for the plasticiser, di-(2-ethylhexyl) terephthalate (DEHTP) using in silico, in vitro and human biomonitoring data.Front Pharmacol. 2023 Feb 20;14:1140852. doi: 10.3389/fphar.2023.1140852. eCollection 2023. Front Pharmacol. 2023. PMID: 36891271 Free PMC article.
-
Refinement and calibration of a human PBPK model for the plasticiser, Di-(2-propylheptyl) phthalate (DPHP) using in silico, in vitro and human biomonitoring data.Front Pharmacol. 2023 Feb 2;14:1111433. doi: 10.3389/fphar.2023.1111433. eCollection 2023. Front Pharmacol. 2023. PMID: 36865923 Free PMC article.
-
Development, Testing, Parameterisation and Calibration of a Human PBPK Model for the Plasticiser, Di-(2-propylheptyl) Phthalate (DPHP) Using in Silico, in vitro and Human Biomonitoring Data.Front Pharmacol. 2021 Sep 2;12:692442. doi: 10.3389/fphar.2021.692442. eCollection 2021. Front Pharmacol. 2021. PMID: 34539393 Free PMC article.
References
-
- Barter Z. E., Bayliss M. K., Beaune P. H., Boobis A. R., Carlile D. J., Edwards R. J., et al. (2007). Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8 (1), 33–45. - PubMed
-
- Barton H. A., Chiu W. A., Setzer R. W., Andersen M. E., Bailer A. J., Bois F. Y., et al. (2007). Characterizing uncertainty and variability in physiologically-based pharmacokinetic (PBPK) models: state of the science and needs for research and implementation. Toxicol. Sci. 99, 395–402. 10.1093/toxsci/kfm100 - DOI - PubMed
-
- Barton H. A., Bessems J., Bouvier d’Yvoire M., Buist H., Clewell H., Gundert-Remy U., et al. (2009). “Principles of Characterizing and Applying Physiologically-Based Pharmacokinetic and Toxicokinetic Models in Risk Assessment,” in IPCS project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals.
LinkOut - more resources
Full Text Sources
