Development of a Monitoring Strategy for Laser-Textured Metallic Surfaces Using a Diffractive Approach

Materials (Basel). 2019 Dec 20;13(1):53. doi: 10.3390/ma13010053.


The current status of research around the world concurs on the powerful influence of micro- and nano-textured surfaces in terms of surface functionalization. In order to characterize the manufactured topographical morphology with regard to the surface quality or homogeneity, major efforts are still required. In this work, an optical approach for the indirect evaluation of the quality and morphology of surface structures manufactured with Direct Laser Interference Patterning (DLIP) is presented. For testing the designed optical configuration, line-like surface patterns are fabricated at a 1064 nm wavelength on stainless steel with a repetitive distance of 4.9 µm, utilizing a two-beam DLIP configuration. Depending on the pulse to pulse overlap and hatch distance, different single and complex pattern geometries are produced, presenting non-homogenous and homogenous surface patterns. The developed optical system permitted the successfully classification of different pattern geometries, in particular, those showing single-scale morphology (high homogeneity). Additionally, the fabricated structures were measured using confocal microscopy method, and the obtained topographies were correlated with the recorded optical images.

Keywords: diffraction analysis; direct laser interference patterning; homogeneity characterization; indirect surface characterization; periodic structures.