Hepatic metabolomics and transcriptomics to study susceptibility to ketosis in response to prepartal nutritional management

J Anim Sci Biotechnol. 2019 Dec 18;10:96. doi: 10.1186/s40104-019-0404-z. eCollection 2019.

Abstract

Background: Ketosis in dairy cows is associated with body fat mobilization during the peripartal period. Sub-clinical and clinical ketosis arise more frequently in cows that are overfed energy during the entire dry (last 50 to 45 days prior to parturition) or close-up period (last ~ 28 days prepartum).

Methods: A retrospective analysis was performed on 12 cows from a larger cohort that were fed a higher-energy diet [1.54 Mcal/kg of dry matter (DM); 35.9% of DM corn silage and 13% of DM ground corn] during the close-up dry period, of which 6 did not develop clinical ketosis (OVE, 0.83 mmol/L plasma hydroxybutyrate; BHB) and 6 were diagnosed with clinical ketosis (KET, 1.4 mmol/L BHB) during the first week postpartum. A whole-transcriptome bovine microarray (Agilent Technologies) and metabolomics (GC-MS, LC-MS; Metabolon® Inc.) were used to perform transcript and metabolite profiling of liver tissue harvested at - 10 days relative to parturition which allowed to establish potential associations between prepartal transcriptome/metabolome profiles and susceptibility to clinical ketosis postpartum.

Results: Cows in KET had greater (P = 0.01) overall body weight between - 2 and 1 week around parturition, but similar body condition score than OVE. Although dry matter intake (DMI) did not differ prepartum, KET cows had lower (P < 0.01) DMI and similar milk yield as OVE cows during the first week postpartum. Transcriptome analysis revealed a total of 3065 differentially expressed genes (DEG; P ≤ 0.05) in KET. Metabolomics identified 15 out of 313 total biochemical compounds significantly affected (P ≤ 0.10) in KET. Among those, greater concentrations (P ≤ 0.06, + 2.3-fold) of glycochenodeoxycholate in KET cows also have been detected in humans developing non-alcoholic fatty liver disease. Bioinformatics analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and the DEG revealed that, among the top 20 most-impacted metabolic pathway categories in KET, 65% were overall downregulated. Those included 'Metabolism of cofactors and vitamins', 'Biosynthesis of other secondary metabolites', 'Lipid', 'Carbohydrate', and 'Glycan biosynthesis and metabolism'. The lower relative concentration of glucose-6-phosphate and marked downregulation of fructose-1,6-bisphosphatase 2 and pyruvate dehydrogenase kinase 4 support a strong impairment in gluconeogenesis in prepartal liver of cows developing KET postpartum. Among the top 20 most-impacted non-metabolic pathways, 85% were downregulated. Pathways such as 'mTOR signalling' and 'Insulin signalling' were among those. 'Ribosome', 'Nucleotide excision repair', and 'Adherens junctions' were the only upregulated pathways in cows with KET.

Conclusions: The combined data analyses revealed more extensive alterations of the prepartal liver transcriptome than metabolome in cows overfed energy and developing ketosis postpartum. The causative link between these tissue-level adaptations and onset of clinical ketosis needs to be studied further.

Keywords: Bioinformatics; Ketosis; Metabolomics; Transition cow.