CLiAl2E and CLi2AlE (E = P, As, Sb, Bi): Planar Tetracoordinate Carbon Clusters with 16 and 14 Valence Electrons

ACS Omega. 2019 Dec 3;4(25):21311-21318. doi: 10.1021/acsomega.9b02869. eCollection 2019 Dec 17.

Abstract

The strategy to remove the lone pairs of ligands combined with the bonding similarity between Li and Al have been utilized to design new planar tetracoordinate carbon (ptC) species C 2v CLiAl2E and CLi2AlE based on ptC global minima CAl3E (E = P, As, Sb, Bi) clusters. The explorations of potential energy surfaces and high-level CCSD(T) calculations indicate that these planar tetracoordinate carbon (ptC) species with 16 and 14 valence electrons (ve) are the global minima except for CLiAl2P. Bonding analyses reveal that there is one π and three σ bonds between C and ligands, one delocalized σ bond between the peripheral ligands, and three/two lone pairs for CLiAl2E and CLi2AlE (E = P, As, Sb, Bi). Especially, the C=E double bonds are crucial for the stabilities of these ptC clusters. The ptC core is governed by 2π + 6σ bonding, which conforms to the 8-electron counting. Born-Oppenheimer molecular dynamics (BOMD) simulations reveal that CLiAl2E and CLi2AlE (E = P, As, Sb, Bi) clusters are robust against isomerization and decomposition. The results obtained in this work complete the series of ptC CLi n Al3-n E (E = P, As, Sb, Bi; n = 0-3) systems and 18ve, 16ve, 14ve, and 12ve counting.