Understanding the Development of Amblyopia Using Macaque Monkey Models

Proc Natl Acad Sci U S A. 2019 Dec 23;116(52):26217-26223. doi: 10.1073/pnas.1902285116. Online ahead of print.


Amblyopia is a sensory developmental disorder affecting as many as 4% of children around the world. While clinically identified as a reduction in visual acuity and disrupted binocular function, amblyopia affects many low- and high-level perceptual abilities. Research with nonhuman primate models has provided much needed insight into the natural history of amblyopia, its origins and sensitive periods, and the brain mechanisms that underly this disorder. Amblyopia results from abnormal binocular visual experience and impacts the structure and function of the visual pathways beginning at the level of the primary visual cortex (V1). However, there are multiple instances of abnormalities in areas beyond V1 that are not simply inherited from earlier stages of processing. The full constellation of deficits must be taken into consideration in order to understand the broad impact of amblyopia on visual and visual-motor function. The data generated from studies of animal models of the most common forms of amblyopia have provided indispensable insight into the disorder, which has significantly impacted clinical practice. It is expected that this translational impact will continue as ongoing research into the neural correlates of amblyopia provides guidance for novel therapeutic approaches.

Keywords: amblyopia; comparative vision; macaque monkey; nonhuman primate; visual cortex.