Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers

Opt Express. 2019 Dec 23;27(26):37400-37418. doi: 10.1364/OE.27.037400.

Abstract

We present passive, visible light silicon nitride waveguides fabricated on ≈ 100 µm thick 200 mm silicon wafers using deep ultraviolet lithography. The best-case propagation losses of single-mode waveguides were ≤ 2.8 dB/cm and ≤ 1.9 dB/cm over continuous wavelength ranges of 466-550 nm and 552-648 nm, respectively. In-plane waveguide crossings and multimode interference power splitters are also demonstrated. Using this platform, we realize a proof-of-concept implantable neurophotonic probe for optogenetic stimulation of rodent brains. The probe has grating coupler emitters defined on a 4 mm long, 92 µm thick shank and operates over a wide wavelength range of 430-645 nm covering the excitation spectra of multiple opsins and fluorophores used for brain stimulation and imaging.