Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives

Appl Microbiol Biotechnol. 2020 Feb;104(4):1383-1399. doi: 10.1007/s00253-019-10210-9. Epub 2019 Dec 26.

Abstract

Biological nitrogen fixation (BNF) is accomplished through the action of the oxygen-sensitive enzyme nitrogenase. One unique caveat of this reaction is the inclusion of hydrogen gas (H2) evolution as a requirement of the reaction mechanism. In the absence of nitrogen gas as a substrate, nitrogenase will reduce available protons to become a directional ATP-dependent hydrogenase. Aerobic nitrogen-fixing microbes are of particular interest, because these organisms have evolved to perform these reactions with oxygen-sensitive enzymes in an environment surrounded by oxygen. The ability to maintain a functioning nitrogenase in aerobic conditions facilitates the application of these organisms under conditions where most anaerobic nitrogen fixers are excluded. In recent years, questions related to the potential yields of the nitrogenase-derived products ammonium and H2 have grown more approachable to experimentation based on efforts to construct increasingly more complicated strains of aerobic nitrogen fixers such as the obligate aerobe Azotobacter vinelandii. This mini-review provides perspectives of recent and historical efforts to understand and quantify the yields of ammonium and H2 that can be obtained through the model aerobe A. vinelandii, and outstanding questions that remain to be answered to fully realize the potential of nitrogenase in these applications with model aerobic bacteria.

Keywords: Ammonium; Hydrogen; Hydrogenase; Nitrogenase; fixABCX; nifL; rnf.

Publication types

  • Review

MeSH terms

  • Aerobiosis
  • Ammonia / metabolism*
  • Azotobacter vinelandii / enzymology*
  • Hydrogen / metabolism*
  • Industrial Microbiology / trends
  • Nitrogen-Fixing Bacteria / enzymology*
  • Nitrogenase / metabolism*

Substances

  • Ammonia
  • Hydrogen
  • Nitrogenase