Direct visualization of degradation microcompartments at the ER membrane
- PMID: 31882451
- PMCID: PMC6969544
- DOI: 10.1073/pnas.1905641117
Direct visualization of degradation microcompartments at the ER membrane
Abstract
To promote the biochemical reactions of life, cells can compartmentalize molecular interaction partners together within separated non-membrane-bound regions. It is unknown whether this strategy is used to facilitate protein degradation at specific locations within the cell. Leveraging in situ cryo-electron tomography to image the native molecular landscape of the unicellular alga Chlamydomonas reinhardtii, we discovered that the cytosolic protein degradation machinery is concentrated within ∼200-nm foci that contact specialized patches of endoplasmic reticulum (ER) membrane away from the ER-Golgi interface. These non-membrane-bound microcompartments exclude ribosomes and consist of a core of densely clustered 26S proteasomes surrounded by a loose cloud of Cdc48. Active proteasomes in the microcompartments directly engage with putative substrate at the ER membrane, a function canonically assigned to Cdc48. Live-cell fluorescence microscopy revealed that the proteasome clusters are dynamic, with frequent assembly and fusion events. We propose that the microcompartments perform ER-associated degradation, colocalizing the degradation machinery at specific ER hot spots to enable efficient protein quality control.
Keywords: ERAD; cdc48; cryo-electron tomography; phase separation; proteasome.
Copyright © 2020 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no competing interest.
Figures
Similar articles
-
Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path.Annu Rev Biochem. 2018 Jun 20;87:751-782. doi: 10.1146/annurev-biochem-062917-012749. Epub 2018 Feb 2. Annu Rev Biochem. 2018. PMID: 29394096 Review.
-
Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways.Crit Rev Biochem Mol Biol. 2019 Apr;54(2):153-163. doi: 10.1080/10409238.2019.1610351. Epub 2019 May 14. Crit Rev Biochem Mol Biol. 2019. PMID: 31084437 Review.
-
ER-associated Protein Degradation at Atomic Resolution.Trends Biochem Sci. 2020 Sep;45(9):723-725. doi: 10.1016/j.tibs.2020.06.005. Trends Biochem Sci. 2020. PMID: 32616332
-
A Case for Sec61 Channel Involvement in ERAD.Trends Biochem Sci. 2017 Mar;42(3):171-179. doi: 10.1016/j.tibs.2016.10.005. Epub 2016 Dec 5. Trends Biochem Sci. 2017. PMID: 27932072 Review.
-
A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates.Mol Biol Cell. 2018 May 1;29(9):1021-1030. doi: 10.1091/mbc.E17-08-0514. Epub 2018 Mar 22. Mol Biol Cell. 2018. PMID: 29514927 Free PMC article.
Cited by
-
Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization.Open Biol. 2020 Sep;10(9):200186. doi: 10.1098/rsob.200186. Epub 2020 Sep 16. Open Biol. 2020. PMID: 32931719 Free PMC article. Review.
-
Metallic support films reduce optical heating in cryogenic correlative light and electron tomography.J Struct Biol. 2022 Dec;214(4):107901. doi: 10.1016/j.jsb.2022.107901. Epub 2022 Oct 1. J Struct Biol. 2022. PMID: 36191745 Free PMC article.
-
Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology.Nat Methods. 2023 Apr;20(4):499-511. doi: 10.1038/s41592-023-01783-5. Epub 2023 Mar 13. Nat Methods. 2023. PMID: 36914814 Review.
-
Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy.Brain. 2022 Mar 29;145(1):168-178. doi: 10.1093/brain/awab249. Brain. 2022. PMID: 34382059 Free PMC article.
-
A transformation clustering algorithm and its application in polyribosomes structural profiling.Nucleic Acids Res. 2022 Sep 9;50(16):9001-9011. doi: 10.1093/nar/gkac547. Nucleic Acids Res. 2022. PMID: 35811088 Free PMC article.
References
-
- Fabunmi R. P., Wigley W. C., Thomas P. J., DeMartino G. N., Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J. Cell Sci. 114, 29–36 (2001). - PubMed
-
- Takeda K., Yanagida M., Regulation of nuclear proteasome by Rhp6/Ubc2 through ubiquitination and destruction of the sensor and anchor Cut8. Cell 122, 393–405 (2005). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
