Anthocyanin-Functionalized Contact Lens Sensors for Ocular pH Monitoring

ACS Omega. 2019 Dec 12;4(26):21792-21798. doi: 10.1021/acsomega.9b02638. eCollection 2019 Dec 24.

Abstract

Anthocyanins are bioactive compounds naturally found in a variety of leaves, fruits, and vegetables. Anthocyanin pigments undergo a modification in their chemical structure when exposed to different concentrations of hydrogen ions, and they were extensively studied to be used as active elements in biocompatible pH sensors. The ocular pH is a significant parameter to assess the ocular physiology in cases of postocular surgery, keratoconjunctivitis, and ocular rosacea. Contact lenses have the potential to be used as medical diagnostic devices for in situ continuous monitoring of the ocular physiology. Here, anthocyanin-functionalized contact lenses were developed as wearable sensors to monitor the ocular pH. Anthocyanin pigments were extracted from Brassica oleracea and used to functionalize the polymeric matrices of commercial soft contact lenses by soaking and drop-casting processes. Contact lenses responded to the physiological ocular pH of 6.5, 7.0, and 7.5, exhibiting a systematic color shift from pink (pH 6.5) to purple (pH 7.0) and blue (pH 7.5). The functionalization of contact lens sensors was evaluated as a function of the dye concentration. Quantitative values were obtained by comparing the RGB triplets of the colors obtained with the naturally extracted dye and with delphinidin chloride dye in 0.0 to 1.5 mmol L-1 aqueous solution. The functionalization of contact lenses was studied as a function of the soaking time, resulting in best results when soaking for 24 h. The dye leakage from the contact lenses in deionized water was evaluated, and a negligible leakage after 18 h was observed. Poly-2-hydroxy ethylmethacrylate contact lenses were fabricated and cross-linked with anthocyanin dye, resulting in a slight color shift upon pH changes from 6.5 to 7.4. Contact lens pH sensors may be used to continuously monitor the ocular pH at point-of-care settings.