The vacuum arc ion source for indium and tin ions implantation into phase change memory thin films

Rev Sci Instrum. 2019 Dec 1;90(12):123313. doi: 10.1063/1.5128561.

Abstract

One of the most prospective electrical and optical nonvolatile memory types is the phase change memory based on chalcogenide materials, particularly Ge2Sb2Te5. Introduction of dopants is an effective method for the purposeful change of Ge2Sb2Te5 thin film properties. In this work, we used the ion implantation method for the introduction of In and Sn into Ge2Sb2Te5 thin films by a Multipurpose Test Bench (MTB) at the National Research Center "Kurchatov Institute"-Institute for Theoretical and Experimental Physics. For Sn and In ion implantation into Ge2Sb2Te5, the following MTB elements were used: a vacuum arc ion source, an electrostatic focusing system, and a system for current and beam profile measurements. The MTB parameters for Sn and In ion implantation and its effect on the material properties are presented. Implanted Ge2Sb2Te5 thin films were irradiated by femtosecond laser pulses. It was shown that the ion implantation resulted in a decrease in the threshold laser fluence necessary for crystallization compared to the undoped Ge2Sb2Te5.