Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models
- PMID: 31897474
- PMCID: PMC7233004
- DOI: 10.1093/cercor/bhz322
Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models
Abstract
The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.
Keywords: biomimetic; computational neuroscience; microcircuit; neural network; neuroinformatics.
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Figures
Similar articles
-
Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps.Neuroimage. 2006 May 15;31(1):86-108. doi: 10.1016/j.neuroimage.2005.11.045. Epub 2006 Feb 15. Neuroimage. 2006. PMID: 16480895
-
Bypassing V1: a direct geniculate input to area MT.Nat Neurosci. 2004 Oct;7(10):1123-8. doi: 10.1038/nn1318. Epub 2004 Sep 19. Nat Neurosci. 2004. PMID: 15378066
-
Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN.J Comp Neurol. 2006 Sep 20;498(3):330-51. doi: 10.1002/cne.21060. J Comp Neurol. 2006. PMID: 16871526
-
Functional cell classes and functional architecture in the early visual system of a highly visual rodent.Prog Brain Res. 2005;149:127-45. doi: 10.1016/S0079-6123(05)49010-X. Prog Brain Res. 2005. PMID: 16226581 Review.
-
Integrated model of visual processing.Brain Res Brain Res Rev. 2001 Oct;36(2-3):96-107. doi: 10.1016/s0165-0173(01)00085-6. Brain Res Brain Res Rev. 2001. PMID: 11690606 Review.
Cited by
-
NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways.Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2300558120. doi: 10.1073/pnas.2300558120. Epub 2023 Jul 31. Proc Natl Acad Sci U S A. 2023. PMID: 37523562 Free PMC article.
-
Human Brain Project Partnering Projects Meeting: Status Quo and Outlook.eNeuro. 2023 Sep 5;10(9):ENEURO.0091-23.2023. doi: 10.1523/ENEURO.0091-23.2023. Print 2023 Sep. eNeuro. 2023. PMID: 37669867 Free PMC article.
-
Primate V2 Receptive Fields Derived from Anatomically Identified Large-Scale V1 Inputs.Res Sq [Preprint]. 2024 May 17:rs.3.rs-4139501. doi: 10.21203/rs.3.rs-4139501/v1. Res Sq. 2024. PMID: 38798339 Free PMC article. Preprint.
-
Resolving the mesoscopic missing link: Biophysical modeling of EEG from cortical columns in primates.Neuroimage. 2022 Nov;263:119593. doi: 10.1016/j.neuroimage.2022.119593. Epub 2022 Aug 27. Neuroimage. 2022. PMID: 36031184 Free PMC article.
-
Local and long-distance organization of prefrontal cortex circuits in the marmoset brain.Neuron. 2023 Jul 19;111(14):2258-2273.e10. doi: 10.1016/j.neuron.2023.04.028. Epub 2023 May 16. Neuron. 2023. PMID: 37196659 Free PMC article.
References
-
- Adams MM, Hof PR, Gattass R, Webster MJ, Ungerleider LG. 2000. Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol. 419:377–393. - PubMed
-
- Ahmad A, Spear PD. 1993. Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons. J Comp Neurol. 334:631–643. - PubMed
-
- Ahmed B, Cordery PM, McLelland D, Bair W, Krug K. 2012. Long-range clustered connections within extrastriate visual area V5/MT of the rhesus macaque. Cereb Cortex. 22:60–73. - PubMed
-
- Albright TD. 1984. Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol. 52:1106–1130. - PubMed
-
- Albright TD, Desimone R. 1987. Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res. 65:582–592. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
