Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos

FASEB J. 2020 Jan;34(1):1637-1651. doi: 10.1096/fj.201900578RR. Epub 2019 Dec 3.

Abstract

Studies on the effects of transcriptional memory on clone reprogramming in mammals are limited. In the present study, we observed higher levels of active histone H3 lysine 4 trimethylation (H3K4me3 and 5-hydroxymethylcytosine) and repressive (5-methylcytosine) epigenetic modifications in bovine early cloned embryos than in in vitro fertilized embryos. We hypothesized that aberrant epigenetic modification may result in transcriptional disorders in bovine somatic cell nuclear transfer (SCNT) embryos. RNA sequencing results confirmed that both abnormal transcriptional silencing and transcriptional activation are involved in bovine SCNT reprogramming. The cloned embryos exhibited excessive transcription in RNA processing- and translation-related genes as well as transcriptional defects in reproduction-related genes whose transcriptional profiles were similar to those in donor cells. These results demonstrated the existence of active and silent memory genes inherited from donor cells in early bovine SCNT embryos. Further, H3K4me3-specific demethylase 5B (KDM5B) mRNA was injected into the reconstructed embryos to reduce the increased H3K4me3 modification. KDM5B overexpression not only reduced the transcriptional level of active memory genes, but also promoted the expression of silent memory genes; in particular, it rescued the expression of multiple development-related genes. These results showed that transcriptional memory acts as a reprogramming barrier and KDM5B improves SCNT reprogramming via bidirectional regulation effects on transcriptional memory genes in bovines.

Keywords: H3K4me3; H3K4me3‐specific demethylase 5B; Transcriptional memory gene; bovine; somatic cell nuclear transfer reprogramming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Cellular Reprogramming / genetics
  • Cloning, Organism / methods
  • Embryo, Mammalian / physiology*
  • Embryonic Development / genetics*
  • Epigenesis, Genetic / genetics
  • Fertilization in Vitro / methods
  • Gene Expression Regulation, Developmental / genetics*
  • Histones / genetics
  • Nuclear Transfer Techniques
  • Protein Processing, Post-Translational / genetics
  • Transcription, Genetic / genetics*

Substances

  • Histones
  • histone H3 trimethyl Lys4