Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb;15(2):89-93.
doi: 10.1038/s41565-019-0605-9. Epub 2020 Jan 13.

Ultrasensitive torque detection with an optically levitated nanorotor

Affiliations

Ultrasensitive torque detection with an optically levitated nanorotor

Jonghoon Ahn et al. Nat Nanotechnol. 2020 Feb.

Abstract

Torque sensors such as the torsion balance enabled the first determination of the gravitational constant by Henri Cavendish1 and the discovery of Coulomb's law. Torque sensors are also widely used in studying small-scale magnetism2,3, the Casimir effect4 and other applications5. Great effort has been made to improve the torque detection sensitivity by nanofabrication and cryogenic cooling. Until now, the most sensitive torque sensor has achieved a remarkable sensitivity of 2.9 × 10-24 N m Hz-1/2 at millikelvin temperatures in a dilution refrigerator6. Here, we show a torque sensor reaching sensitivity of (4.2 ± 1.2) × 10-27 N m Hz-1/2 at room temperature. It is created by an optically levitated nanoparticle in vacuum. Our system does not require complex nanofabrication. Moreover, we drive a nanoparticle to rotate at a record high speed beyond 5 GHz (300 billion r.p.m.). Our calculations show that this system will be able to detect the long sought after vacuum friction7-10 near a surface under realistic conditions. The optically levitated nanorotor will also have applications in studying nanoscale magnetism2,3 and the quantum geometric phase11.

Similar articles

Cited by

References

    1. Cavendish, H. Experiments to determine the density of the earth. Philos. Trans. R. Soc. London 88, 469–526 (1798).
    1. Wu, M. et al. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol. 12, 127 (2017). - DOI
    1. Losby, J. E., Sauer, V. T. K. & Freeman, M. R. Recent advances in mechanical torque studies of small-scale magnetism. J. Phys. D. 51, 483001 (2018). - DOI
    1. Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001). - DOI
    1. He, L., Li, H. & Li, M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci. Adv. 2, e1600485 (2016). - DOI

Publication types

LinkOut - more resources