Ultrasensitive torque detection with an optically levitated nanorotor
- PMID: 31932762
- DOI: 10.1038/s41565-019-0605-9
Ultrasensitive torque detection with an optically levitated nanorotor
Abstract
Torque sensors such as the torsion balance enabled the first determination of the gravitational constant by Henri Cavendish1 and the discovery of Coulomb's law. Torque sensors are also widely used in studying small-scale magnetism2,3, the Casimir effect4 and other applications5. Great effort has been made to improve the torque detection sensitivity by nanofabrication and cryogenic cooling. Until now, the most sensitive torque sensor has achieved a remarkable sensitivity of 2.9 × 10-24 N m Hz-1/2 at millikelvin temperatures in a dilution refrigerator6. Here, we show a torque sensor reaching sensitivity of (4.2 ± 1.2) × 10-27 N m Hz-1/2 at room temperature. It is created by an optically levitated nanoparticle in vacuum. Our system does not require complex nanofabrication. Moreover, we drive a nanoparticle to rotate at a record high speed beyond 5 GHz (300 billion r.p.m.). Our calculations show that this system will be able to detect the long sought after vacuum friction7-10 near a surface under realistic conditions. The optically levitated nanorotor will also have applications in studying nanoscale magnetism2,3 and the quantum geometric phase11.
Similar articles
-
Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor.Phys Rev Lett. 2018 Jul 20;121(3):033603. doi: 10.1103/PhysRevLett.121.033603. Phys Rev Lett. 2018. PMID: 30085795
-
Torsional Optomechanics of a Levitated Nonspherical Nanoparticle.Phys Rev Lett. 2016 Sep 16;117(12):123604. doi: 10.1103/PhysRevLett.117.123604. Epub 2016 Sep 15. Phys Rev Lett. 2016. PMID: 27689273
-
Measurement of the Casimir torque.Nature. 2018 Dec;564(7736):386-389. doi: 10.1038/s41586-018-0777-8. Epub 2018 Dec 19. Nature. 2018. PMID: 30568194
-
Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures.Phys Rev Lett. 2019 Jun 7;122(22):223601. doi: 10.1103/PhysRevLett.122.223601. Phys Rev Lett. 2019. PMID: 31283294
-
Diode laser absorption sensors for gas-dynamic and combustion flows.Meas Sci Technol. 1998 Apr;9(4):545-62. doi: 10.1088/0957-0233/9/4/001. Meas Sci Technol. 1998. PMID: 11543363 Review.
Cited by
-
Structured transverse orbital angular momentum probed by a levitated optomechanical sensor.Nat Commun. 2023 May 6;14(1):2638. doi: 10.1038/s41467-023-38261-7. Nat Commun. 2023. PMID: 37149678 Free PMC article.
-
Optothermal rotation of micro-/nano-objects.Chem Commun (Camb). 2023 Feb 21;59(16):2208-2221. doi: 10.1039/d2cc06955e. Chem Commun (Camb). 2023. PMID: 36723196 Free PMC article. Review.
-
Optothermal rotation of micro-/nano-objects in liquids.ArXiv. 2023 Jan 14:arXiv:2301.04297v2. Preprint. ArXiv. 2023. PMID: 36713256 Free PMC article. Updated.
-
Universal optothermal micro/nanoscale rotors.Sci Adv. 2022 Jun 17;8(24):eabn8498. doi: 10.1126/sciadv.abn8498. Epub 2022 Jun 15. Sci Adv. 2022. PMID: 35704582 Free PMC article.
-
Optimal metrology with programmable quantum sensors.Nature. 2022 Mar;603(7902):604-609. doi: 10.1038/s41586-022-04435-4. Epub 2022 Mar 23. Nature. 2022. PMID: 35322252
References
-
- Cavendish, H. Experiments to determine the density of the earth. Philos. Trans. R. Soc. London 88, 469–526 (1798).
-
- Wu, M. et al. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol. 12, 127 (2017). - DOI
-
- Losby, J. E., Sauer, V. T. K. & Freeman, M. R. Recent advances in mechanical torque studies of small-scale magnetism. J. Phys. D. 51, 483001 (2018). - DOI
-
- Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J. & Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science 291, 1941–1944 (2001). - DOI
-
- He, L., Li, H. & Li, M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci. Adv. 2, e1600485 (2016). - DOI
Publication types
LinkOut - more resources
Full Text Sources
