Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones

Int J Environ Res Public Health. 2020 Jan 9;17(2):436. doi: 10.3390/ijerph17020436.

Abstract

Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs.

Keywords: activated sludge; industrial zone; metabolic function; microbial community; wastewater treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / classification*
  • Bacteria / metabolism
  • Carbon / metabolism
  • Cities
  • Denitrification
  • Industrial Waste
  • Microbiota*
  • Nitrification
  • Nitrogen / metabolism
  • Phosphorus / metabolism
  • Sewage / microbiology*
  • Waste Disposal, Fluid / methods*
  • Waste Water / chemistry*

Substances

  • Industrial Waste
  • Sewage
  • Waste Water
  • Phosphorus
  • Carbon
  • Nitrogen