Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients

Sci Rep. 2020 Jan 14;10(1):209. doi: 10.1038/s41598-019-56597-3.

Abstract

The sarcomeric troponin-tropomyosin complex is a critical mediator of excitation-contraction coupling, sarcomeric stability and force generation. We previously reported that induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with a dilated cardiomyopathy (DCM) mutation, troponin T (TnT)-R173W, display sarcomere protein misalignment and impaired contractility. Yet it is not known how TnT mutation causes dysfunction of sarcomere microdomains and how these events contribute to misalignment of sarcomeric proteins in presence of DCM TnT-R173W. Using a human iPSC-CM model combined with CRISPR/Cas9-engineered isogenic controls, we uncovered that TnT-R173W destabilizes molecular interactions of troponin with tropomyosin, and limits binding of PKA to local sarcomere microdomains. This attenuates troponin phosphorylation and dysregulates local sarcomeric microdomains in DCM iPSC-CMs. Disrupted microdomain signaling impairs MYH7-mediated, AMPK-dependent sarcomere-cytoskeleton filament interactions and plasma membrane attachment. Small molecule-based activation of AMPK can restore TnT microdomain interactions, and partially recovers sarcomere protein misalignment as well as impaired contractility in DCM TnT-R173W iPSC-CMs. Our findings suggest a novel therapeutic direction targeting sarcomere- cytoskeleton interactions to induce sarcomere re-organization and contractile recovery in DCM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / metabolism
  • Cardiomyopathy, Dilated / metabolism
  • Cardiomyopathy, Dilated / pathology*
  • Cell Differentiation*
  • Cytoskeleton / metabolism*
  • Excitation Contraction Coupling
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Induced Pluripotent Stem Cells / pathology*
  • Mutation
  • Myocardial Contraction
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology*
  • Sarcomeres / metabolism
  • Sarcomeres / pathology*
  • Troponin / chemistry*
  • Troponin / metabolism

Substances

  • Troponin
  • Calcium