Low-Finesse Fabry-Pérot Interferometers Applied in the Study of the Relation between the Optical Path Difference and Poles Location

Sensors (Basel). 2020 Jan 13;20(2):453. doi: 10.3390/s20020453.

Abstract

Interferometry sensors are frequently analyzed by applying the Fourier transform because the transformation separates all frequency components of its signal, making its study on a complex plane feasible. In this work, we study the relation between the optical path difference (OPD) and poles location theoretically and experimentally, using the Laplace transform and a pole-zero map. Theory and experiments are in concordance. For our study, only the cosine function was considered, which is filtered from the interference pattern. In experimental work, two unperturbed low-finesse Fabry-Pérot interferometers were used. First, a Fabry-Pérot interferometer that has a cavity length of ~1.6 mm was used. Its optical path difference was 2.33 mm and the poles were localized at points ±i12. rad/nm. Secondly, a Fabry-Pérot interferometer with a cavity length of ~5.2 mm was used, and its optical path difference was 7.59 mm and the poles were localized at points ±i40.4 rad/nm. Experimental results confirmed the theoretical analysis. Our proposal finds practical application for interferometer analysis, signal processing of optical fiber sensors, communication system analysis, and multiplexing systems based on interferometers.

Keywords: Fabry–Pérot interferometer; Laplace transform; interferometry sensors; pole-zero map; relation between the optical path difference (OPD) and poles location.