An efficient analytical reduction of detailed nonlinear neuron models
- PMID: 31941884
- PMCID: PMC6962154
- DOI: 10.1038/s41467-019-13932-6
An efficient analytical reduction of detailed nonlinear neuron models
Abstract
Detailed conductance-based nonlinear neuron models consisting of thousands of synapses are key for understanding of the computational properties of single neurons and large neuronal networks, and for interpreting experimental results. Simulations of these models are computationally expensive, considerably curtailing their utility. Neuron_Reduce is a new analytical approach to reduce the morphological complexity and computational time of nonlinear neuron models. Synapses and active membrane channels are mapped to the reduced model preserving their transfer impedance to the soma; synapses with identical transfer impedance are merged into one NEURON process still retaining their individual activation times. Neuron_Reduce accelerates the simulations by 40-250 folds for a variety of cell types and realistic number (10,000-100,000) of synapses while closely replicating voltage dynamics and specific dendritic computations. The reduced neuron-models will enable realistic simulations of neural networks at unprecedented scale, including networks emerging from micro-connectomics efforts and biologically-inspired "deep networks". Neuron_Reduce is publicly available and is straightforward to implement.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron.J Neurosci. 2005 Oct 5;25(40):9080-95. doi: 10.1523/JNEUROSCI.2220-05.2005. J Neurosci. 2005. PMID: 16207867 Free PMC article.
-
The Tripod neuron: a minimal structural reduction of the dendritic tree.J Physiol. 2023 Aug;601(15):3265-3295. doi: 10.1113/JP283399. Epub 2022 Nov 3. J Physiol. 2023. PMID: 36168736
-
Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration.J Neurosci. 2010 Feb 17;30(7):2767-82. doi: 10.1523/JNEUROSCI.3959-09.2010. J Neurosci. 2010. PMID: 20164360 Free PMC article.
-
Dendritic computation.Annu Rev Neurosci. 2005;28:503-32. doi: 10.1146/annurev.neuro.28.061604.135703. Annu Rev Neurosci. 2005. PMID: 16033324 Review.
-
Inside the brain of a neuron.EMBO Rep. 2006 Sep;7(9):886-92. doi: 10.1038/sj.embor.7400789. EMBO Rep. 2006. PMID: 16953202 Free PMC article. Review.
Cited by
-
How neuronal morphology impacts the synchronisation state of neuronal networks.PLoS Comput Biol. 2024 Mar 4;20(3):e1011874. doi: 10.1371/journal.pcbi.1011874. eCollection 2024 Mar. PLoS Comput Biol. 2024. PMID: 38437226 Free PMC article.
-
Introducing the Dendrify framework for incorporating dendrites to spiking neural networks.Nat Commun. 2023 Jan 10;14(1):131. doi: 10.1038/s41467-022-35747-8. Nat Commun. 2023. PMID: 36627284 Free PMC article.
-
DendroTweaks: An interactive approach for unraveling dendritic dynamics.bioRxiv [Preprint]. 2024 Sep 10:2024.09.06.611191. doi: 10.1101/2024.09.06.611191. bioRxiv. 2024. PMID: 39314451 Free PMC article. Preprint.
-
Analog transmission of action potential fine structure in spiral ganglion axons.J Neurophysiol. 2021 Sep 1;126(3):888-905. doi: 10.1152/jn.00237.2021. Epub 2021 Aug 4. J Neurophysiol. 2021. PMID: 34346782 Free PMC article.
-
Virtual Intelligence: A Systematic Review of the Development of Neural Networks in Brain Simulation Units.Brain Sci. 2022 Nov 15;12(11):1552. doi: 10.3390/brainsci12111552. Brain Sci. 2022. PMID: 36421877 Free PMC article. Review.
References
-
- Rall, W. in Neural Theory Model (ed. Reiss, R. F.) 73–97 (Stanford University Press, Palo Alto, 1964).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
