Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications

J Biomed Mater Res A. 2020 May;108(5):1086-1098. doi: 10.1002/jbm.a.36884. Epub 2020 Jan 22.

Abstract

Bacterial cellulose (BC) membranes display special properties and structures, thus attracting much attention in application in the biomedical areas, for example, as implants for bone or cartilage tissue engineering, as substitutes for skin repairing, and as supports for controlled drug delivery. However, native BC lacks the activity to inhibit bacteria growth on its surface, which limits its applications in biomedical fields. There have been reports on chemical modification of BC membranes to endow them with antimicrobial properties needed for some special biomedical applications. In the present study, aminoalkyl-grafted BC membranes were prepared by alkoxysilane polycondensation using 3-aminopropyltriethoxysilane (APTES). The characterization for morphology and chemical composition showed that BC membranes were successfully grafted with aminoalkylsilane groups through covalent bonding. The surface morphology and roughness of the membranes changed after chemical grafting. Furthermore, after grafting with APTES, the membranes got less hydrophilic than native BC. The aminoalkyl-grafted BC membranes showed strong antibacterial properties against Staphylococcus aureus and Escherichia coli and moreover, they were nontoxic to normal human dermal fibroblasts. These results indicate that aminoalkyl-grafted BC membranes are potential to be used for biomedical applications.

Keywords: 3-aminopropyltriethoxysilane; aminoalkyl-grafted bacterial cellulose; antibacterial activities; cell response; chemical modification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / pharmacology
  • Cellulose / analogs & derivatives*
  • Cellulose / pharmacology
  • Escherichia coli / drug effects
  • Escherichia coli Infections / prevention & control
  • Humans
  • Membranes, Artificial*
  • Propylamines / chemistry
  • Propylamines / pharmacology
  • Silanes / chemistry
  • Silanes / pharmacology
  • Staphylococcal Infections / prevention & control
  • Staphylococcus aureus / drug effects

Substances

  • Anti-Bacterial Agents
  • Biocompatible Materials
  • Membranes, Artificial
  • Propylamines
  • Silanes
  • Cellulose
  • amino-propyl-triethoxysilane