Stereochemistry, Stereodynamics, and Redox and Complexation Behaviors of 2,2'-Diaryl-1,1'-Biazulenes

Chempluschem. 2019 Nov;84(11):1659-1667. doi: 10.1002/cplu.201900262. Epub 2019 Jul 23.

Abstract

2,2'-Diaryl-1,1'-biazulenes were synthesized and electronic communication between the azulene subunits was suggested based on redox measurements. The linkage of azulene at the 1-position also appeared to increase the HOMO levels. In addition, cyclic voltammetry measurements of 2-arylazulenes showed a return peak associated with the oxidation, which was not observed for azulene. The stabilization of the single-electron oxidant may be due to the SOMO-HOMO energy inversion phenomenon. X-ray crystallography of the azulene dimers revealed that this species possessed a syn-type structure in which both aryl groups in the 2-positions formed π-stacks. The twisted structure was indicated to be in the (R)- or (S)-configuration for all molecules in the unit cell. Spontaneous resolution was also shown. Furthermore, from the solid circular dichroism (CD) spectral measurements, the relationship between the absolute configuration of the molecules and the CD spectra was determined. A racemization rotational barrier of ca. 27 kcal mol-1 was calculated. Moreover, the pyridylazulene dimer cyclized upon reaction with PdCl2 to form a 3 : 3 complex, in which the biazulene units cyclized to give ratios between the (R)- and (S)-forms of either 2 : 1 or 1 : 2.

Keywords: azulenes; palladium; racemization; redox chemistry; π-π stacking.

Publication types

  • Research Support, Non-U.S. Gov't