Multiphase Complex Coacervate Droplets
- PMID: 31958956
- PMCID: PMC7020193
- DOI: 10.1021/jacs.9b11468
Multiphase Complex Coacervate Droplets
Abstract
Liquid-liquid phase separation plays an important role in cellular organization. Many subcellular condensed bodies are hierarchically organized into multiple coexisting domains or layers. However, our molecular understanding of the assembly and internal organization of these multicomponent droplets is still incomplete, and rules for the coexistence of condensed phases are lacking. Here, we show that the formation of hierarchically organized multiphase droplets with up to three coexisting layers is a generic phenomenon in mixtures of complex coacervates, which serve as models of charge-driven liquid-liquid phase separated systems. We present simple theoretical guidelines to explain both the hierarchical arrangement and the demixing transition in multiphase droplets using the interfacial tensions and critical salt concentration as inputs. Multiple coacervates can coexist if they differ sufficiently in macromolecular density, and we show that the associated differences in critical salt concentration can be used to predict multiphase droplet formation. We also show that the coexisting coacervates present distinct chemical environments that can concentrate guest molecules to different extents. Our findings suggest that condensate immiscibility may be a very general feature in biological systems, which could be exploited to design self-organized synthetic compartments to control biomolecular processes.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
Similar articles
-
Formation of Multiphase Complex Coacervates and Partitioning of Biomolecules within them.Biomacromolecules. 2020 Feb 10;21(2):630-640. doi: 10.1021/acs.biomac.9b01354. Epub 2019 Nov 27. Biomacromolecules. 2020. PMID: 31743027
-
Multiphase Coacervates Driven by Electrostatic Correlations.ACS Macro Lett. 2021 Aug 17;10(8):1041-1047. doi: 10.1021/acsmacrolett.1c00282. Epub 2021 Jul 27. ACS Macro Lett. 2021. PMID: 35549117
-
Self-programmed enzyme phase separation and multiphase coacervate droplet organization.Chem Sci. 2021 Jan 25;12(8):2794-2802. doi: 10.1039/d0sc06418a. Chem Sci. 2021. PMID: 34164043 Free PMC article.
-
Multiphase coacervates: mimicking complex cellular structures through liquid-liquid phase separation.Chem Commun (Camb). 2024 Nov 7;60(90):13169-13178. doi: 10.1039/d4cc04533e. Chem Commun (Camb). 2024. PMID: 39439431 Review.
-
Biomolecular Chemistry in Liquid Phase Separated Compartments.Front Mol Biosci. 2019 Apr 3;6:21. doi: 10.3389/fmolb.2019.00021. eCollection 2019. Front Mol Biosci. 2019. PMID: 31001538 Free PMC article. Review.
Cited by
-
Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein.Sci Adv. 2022 Dec 2;8(48):eabq6495. doi: 10.1126/sciadv.abq6495. Epub 2022 Dec 2. Sci Adv. 2022. PMID: 36459561 Free PMC article.
-
Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates.Sci Rep. 2022 Mar 15;12(1):4390. doi: 10.1038/s41598-022-08130-2. Sci Rep. 2022. PMID: 35293386 Free PMC article.
-
Rich Phase Separation Behavior of Biomolecules.Mol Cells. 2022 Jan 31;45(1):6-15. doi: 10.14348/molcells.2021.0204. Mol Cells. 2022. PMID: 34966005 Free PMC article. Review.
-
Reentrant DNA shells tune polyphosphate condensate size.bioRxiv [Preprint]. 2023 Sep 15:2023.09.13.557044. doi: 10.1101/2023.09.13.557044. bioRxiv. 2023. Update in: Nat Commun. 2024 Oct 26;15(1):9258. doi: 10.1038/s41467-024-53469-x PMID: 37745474 Free PMC article. Updated. Preprint.
-
In Vitro Transcription-Translation in an Artificial Biomolecular Condensate.ACS Synth Biol. 2023 Jul 21;12(7):2004-2014. doi: 10.1021/acssynbio.3c00069. Epub 2023 Jun 21. ACS Synth Biol. 2023. PMID: 37343188 Free PMC article.
References
-
- Boeynaems S.; Alberti S.; Fawzi N. L.; Mittag T.; Polymenidou M.; Rousseau F.; Schymkowitz J.; Shorter J.; Wolozin B.; Van Den Bosch L.; Tompa P.; Fuxreiter M. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018, 28 (6), 420–435. 10.1016/j.tcb.2018.02.004. - DOI - PMC - PubMed
-
- Brangwynne C. P.; Tompa P.; Pappu R. V. Polymer Physics of Intracellular Phase Transitions. Nat. Phys. 2015, 11 (11), 899–904. 10.1038/nphys3532. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
