Ion Channel Functions in Early Brain Development

Trends Neurosci. 2020 Feb;43(2):103-114. doi: 10.1016/j.tins.2019.12.004. Epub 2020 Jan 17.


During prenatal brain development, ion channels are ubiquitous across several cell types, including progenitor cells and migrating neurons but their function has not been clear. In the past, ion channel dysfunction has been primarily studied in the context of postnatal, differentiated neurons that fire action potentials - notably ion channels mutated in the epilepsies - yet data now support a surprising role in prenatal human brain disorders as well. Modern gene discovery approaches have identified defective ion channels in individuals with cerebral cortex malformations, which reflect abnormalities in early-to-middle stages of embryonic development (prior to ubiquitous action potentials). These human genetics studies and recent in utero animal modeling work suggest that precise control of ionic flux (calcium, sodium, and potassium) contributes to in utero developmental processes such as neural proliferation, migration, and differentiation.

Keywords: bioelectricity; brain malformation; channelopathy; cortical development; encephalopathy; ion channel.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Action Potentials
  • Animals
  • Brain / metabolism
  • Epilepsy*
  • Female
  • Humans
  • Ion Channels* / genetics
  • Ion Channels* / metabolism
  • Neurons / metabolism
  • Pregnancy


  • Ion Channels