Micro-Structure Modelling and Electrical Properties Analysis of PZT Matrix Ferroelectric Composites

Materials (Basel). 2020 Jan 17;13(2):448. doi: 10.3390/ma13020448.


PZT matrix ferroelectric composite is an important research topic in material science because of its many practical, industrial, and scientific applications. Materials with high dielectric permittivity are used to manufacture electronic devices, particularly capacitors and dynamic random access memory (DRAM). Therefore, the development of reliable and efficient micro models to be utilized in analyzing electrical properties can be of great value in accelerating research in this field. In this paper, a 3D microstructure model for PZT matrix ferroelectric composites has been developed and adopted the finite element method (FEM) to calculate the dielectric constant. The microscopy parameters of developed microstructure model are acquired based on the real composites from X-ray (micro-) diffraction and stereological method. The dielectric constant of different volume ratios of PZT matrix ferroelectric composites can be calculated by accurately controlling the volume of Ferrite particles. At the point of validation, the proposed approach makes visual and numeric comparisons between the morphology of the real microstructure and the model generated by the proposed technique. The simulation results by our method was essentially in agreement with experimental results in other literature. Simulation Experimental results also demonstrate that the dielectric constant of PZT matrix ferroelectric composites is significantly changed while the volume ratio of high dielectric phase particles was below 20%. PZT matrix ferroelectric composites Consequently, this method can be easily extended to composites preparation.

Keywords: 3D-model; composite; dielectric constant; finite element method; random close packing of spherical.