Photoluminescence and Photocatalytic Properties of Ag3 PO4 Microcrystals: An Experimental and Theoretical Investigation

Chempluschem. 2016 Feb;81(2):202-212. doi: 10.1002/cplu.201500485. Epub 2015 Nov 9.

Abstract

The structural, morphological, and optical properties of Ag3 PO4 microcrystals were systematically characterized by using a combination of theoretical calculations and experimental techniques. These microcrystals were synthesized by the microwave-assisted hydrothermal (MAH) method. XRD, Rietveld refinements, and FTIR spectroscopy were employed to carry out a structural analysis; the morphologies of the microcrystals were examined by FEG-SEM. First-principles computational studies were used to calculate the geometries of bulk Ag3 PO4 and its (010), (100), (001), (110), (101), (011), and (111) surfaces. A continuous decrease in the energy of the (100) surface led to a good agreement between the experimental and theoretical morphologies. Optical properties were investigated by UV/Vis spectroscopy and photoluminescence (PL) measurements, which revealed a maximum PL emission at λ=444 nm. The MAH-synthesized sample exhibited good activity for the photocatalytic degradation of methyl orange dye under visible irradiation. The photocatalytic activity and PL behavior were correlated with the observed morphology.

Keywords: crystal growth; density functional calculations; photochemistry; silver; surface analysis.