Selectivity filter modalities and rapid inactivation of the hERG1 channel

Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):2795-2804. doi: 10.1073/pnas.1909196117. Epub 2020 Jan 24.

Abstract

The human ether-á-go-go-related gene (hERG1) channel conducts small outward K+ currents that are critical for cardiomyocyte membrane repolarization. The gain-of-function mutation N629D at the outer mouth of the selectivity filter (SF) disrupts inactivation and K+-selective transport in hERG1, leading to arrhythmogenic phenotypes associated with long-QT syndrome. Here, we combined computational electrophysiology with Markov state model analysis to investigate how SF-level gating modalities control selective cation transport in wild-type (WT) and mutant (N629D) hERG1 variants. Starting from the recently reported cryogenic electron microscopy (cryo-EM) open-state channel structure, multiple microseconds-long molecular-dynamics (MD) trajectories were generated using different cation configurations at the filter, voltages, electrolyte concentrations, and force-field parameters. Most of the K+ permeation events observed in hERG1-WT simulations occurred at microsecond timescales, influenced by the spontaneous dehydration/rehydration dynamics at the filter. The SF region displayed conductive, constricted, occluded, and dilated states, in qualitative agreement with the well-documented flickering conductance of hERG1. In line with mutagenesis studies, these gating modalities resulted from dynamic interaction networks involving residues from the SF, outer-mouth vestibule, P-helices, and S5-P segments. We found that N629D mutation significantly stabilizes the SF in a state that is permeable to both K+ and Na+, which is reminiscent of the SF in the nonselective bacterial NaK channel. Increasing the external K+ concentration induced "WT-like" SF dynamics in N629D, in qualitative agreement with the recovery of flickering currents in experiments. Overall, our findings provide an understanding of the molecular mechanisms controlling selective transport in K+ channels with a nonconventional SF sequence.

Keywords: human ether-á-go-go channel; ion channels; long-QT syndrome; molecular dynamics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Motifs
  • ERG1 Potassium Channel / chemistry*
  • ERG1 Potassium Channel / genetics
  • ERG1 Potassium Channel / metabolism*
  • Gain of Function Mutation
  • Humans
  • Kinetics
  • Long QT Syndrome / genetics
  • Long QT Syndrome / metabolism
  • Mutation, Missense
  • Potassium / metabolism
  • Protein Domains
  • Protein Structure, Secondary

Substances

  • ERG1 Potassium Channel
  • Potassium