Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28
- PMID: 31982308
- PMCID: PMC7060810
- DOI: 10.1016/j.molcel.2019.12.023
Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28
Abstract
Cytosolic caspase-8 is a mediator of death receptor signaling. While caspase-8 expression is lost in some tumors, it is increased in others, indicating a conditional pro-survival function of caspase-8 in cancer. Here, we show that tumor cells employ DNA-damage-induced nuclear caspase-8 to override the p53-dependent G2/M cell-cycle checkpoint. Caspase-8 is upregulated and localized to the nucleus in multiple human cancers, correlating with treatment resistance and poor clinical outcome. Depletion of caspase-8 causes G2/M arrest, stabilization of p53, and induction of p53-dependent intrinsic apoptosis in tumor cells. In the nucleus, caspase-8 cleaves and inactivates the ubiquitin-specific peptidase 28 (USP28), preventing USP28 from de-ubiquitinating and stabilizing wild-type p53. This results in de facto p53 protein loss, switching cell fate from apoptosis toward mitosis. In summary, our work identifies a non-canonical role of caspase-8 exploited by cancer cells to override the p53-dependent G2/M cell-cycle checkpoint.
Keywords: G2/M checkpoint; USP28; apoptosis; cancer; caspase-8; p53.
Copyright © 2020 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests The authors declare no competing interests.
Figures
Similar articles
-
The small molecule AU14022 promotes colorectal cancer cell death via p53-mediated G2/M-phase arrest and mitochondria-mediated apoptosis.J Cell Physiol. 2018 Jun;233(6):4666-4676. doi: 10.1002/jcp.26234. Epub 2018 Jan 15. J Cell Physiol. 2018. PMID: 29030986
-
A natural flavonoid, apigenin isolated from Clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway.Clin Transl Oncol. 2021 Apr;23(4):718-730. doi: 10.1007/s12094-020-02461-0. Epub 2020 Jul 27. Clin Transl Oncol. 2021. PMID: 32715386
-
E2F1-dependent pathways are involved in amonafide analogue 7-d-induced DNA damage, G2/M arrest, and apoptosis in p53-deficient K562 cells.J Cell Biochem. 2012 Oct;113(10):3165-77. doi: 10.1002/jcb.24194. J Cell Biochem. 2012. PMID: 22593008
-
Chk1 is dispensable for G2 arrest in response to sustained DNA damage when the ATM/p53/p21 pathway is functional.Oncogene. 2011 Oct 13;30(41):4261-74. doi: 10.1038/onc.2011.135. Epub 2011 May 2. Oncogene. 2011. PMID: 21532626
-
The Role of p53 in Nanoparticle-Based Therapy for Cancer.Cells. 2023 Dec 8;12(24):2803. doi: 10.3390/cells12242803. Cells. 2023. PMID: 38132123 Free PMC article. Review.
Cited by
-
A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study.Nat Commun. 2024 Feb 26;15(1):1729. doi: 10.1038/s41467-024-46064-7. Nat Commun. 2024. PMID: 38409266 Free PMC article.
-
Exploring the tumor micro-environment in primary and metastatic tumors of different ovarian cancer histotypes.Front Cell Dev Biol. 2024 Jan 24;11:1297219. doi: 10.3389/fcell.2023.1297219. eCollection 2023. Front Cell Dev Biol. 2024. PMID: 38328306 Free PMC article.
-
Exploring the apoptotic effects of sericin on HCT116 cells through comprehensive nanostring transcriptomics and proteomics analysis.Sci Rep. 2024 Jan 29;14(1):2366. doi: 10.1038/s41598-024-52789-8. Sci Rep. 2024. PMID: 38287097 Free PMC article.
-
DNAJC8: a prognostic marker and potential therapeutic target for hepatocellular carcinoma.Front Immunol. 2024 Jan 11;14:1289548. doi: 10.3389/fimmu.2023.1289548. eCollection 2023. Front Immunol. 2024. PMID: 38274804 Free PMC article.
-
PRKCSH contributes to TNFSF resistance by extending IGF1R half-life and activation in lung cancer.Exp Mol Med. 2024 Feb;56(1):192-209. doi: 10.1038/s12276-023-01147-1. Epub 2024 Jan 10. Exp Mol Med. 2024. PMID: 38200153 Free PMC article.
References
-
- Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon JC, and Saville MK (2013). p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 32, 1–14. - PubMed
-
- Berglind H, Pawitan Y, Kato S, Ishioka C, and Soussi T (2008). Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination. Cancer Biol. Ther 7, 699–708. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
