Microglia are the brain mononuclear phagocytes which plays a key role in neurodegenerative diseases, like Alzheimer's. Till date, microglia have been explored mostly for their neuro-inflammatory functions. Recent studies have shifted their focus towards less explored functions which involve non-autonomous clearance of protein aggregates. However, these functions are significantly affected by aging and neurodegeneration. In Alzheimer's disease (AD), microglia have been reported to clear amyloid beta (Aβ) deposits via phagocytosis or release various pro-inflammatory cytokines. Whether microglia could be beneficial or detrimental to the brain, it all depends upon the type and strength of stimulus. So, if their beneficial properties could be selectively harnessed without activating pro-inflammatory response, a potential therapeutic strategy could be developed to check the formation of protein aggregates like Aβ. In the present study, we have checked the effect of toxic amyloid beta oligomers (Aβo) on the microglial phagocytic activity. Our findings revealed that at lower concentrations, Aβo are not toxic to the cells and they can survive even with longer exposures but with decreased phagocytic activity. However, at higher concentrations Aβo become toxic and resulted in modulation of various genes which regulates microglial phagocytic activity. Sulforaphane (SFN) treatment has shown to induce the phagocytic activity of Aβo treated microglial cells. In addition, low dose Aβo and SFN treatment have not shown modulation in the levels of pro-inflammatory mediators of microglia. Taken together, these findings suggest that SFN treatment may ameliorate the Aβo mediated decrease in microglial phagocytic activity.
Keywords: Alzheimer’s; Aβ oligomers; microglia; phagocytosis; pro-inflammation; sulforphane.
Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.