Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017;77(12):841.
doi: 10.1140/epjc/s10052-017-5415-3. Epub 2017 Dec 7.

Very Heavy Dark Skyrmions

Affiliations
Free PMC article

Very Heavy Dark Skyrmions

Rainer Dick. Eur Phys J C Part Fields. .
Free PMC article

Abstract

A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ -ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter.

Figures

Fig. 1
Fig. 1
The required Higgs portal coupling for thermal creation of elementary w particles for 1TeVmw15TeV, if the w particles are the dark matter
Fig. 2
Fig. 2
Massive Skyrmion annihilation cross sections to W+W- for weak scale couplings compared to the anticipated 500h CTA sensitivity in the mass range 100TeVMS400TeV and for v=100km/s
Fig. 3
Fig. 3
Integrated very high-energy neutrino fluxes from Skyrmion annihilation as a function of Skyrmion mass and for weak scale couplings. The calculation assumes Nw=4, v=100km/s, and an NFW halo with rs=10.7 kpc and mass 7.3×1011M; see text

Similar articles

  • Prospects for Higgs physics at energies up to 100 TeV.
    Baglio J, Djouadi A, Quevillon J. Baglio J, et al. Rep Prog Phys. 2016 Nov;79(11):116201. doi: 10.1088/0034-4885/79/11/116201. Epub 2016 Oct 6. Rep Prog Phys. 2016. PMID: 27710919
  • Leptophilic dark matter from the lepton asymmetry.
    Cohen T, Zurek KM. Cohen T, et al. Phys Rev Lett. 2010 Mar 12;104(10):101301. doi: 10.1103/PhysRevLett.104.101301. Epub 2010 Mar 9. Phys Rev Lett. 2010. PMID: 20366412
  • Significant gamma lines from inert Higgs dark matter.
    Gustafsson M, Lundström E, Bergström L, Edsjö J. Gustafsson M, et al. Phys Rev Lett. 2007 Jul 27;99(4):041301. doi: 10.1103/PhysRevLett.99.041301. Epub 2007 Jul 27. Phys Rev Lett. 2007. PMID: 17678348
  • Status of the scalar singlet dark matter model.
    GAMBIT Collaboration:, Athron P, Balázs C, Bringmann T, Buckley A, Chrząszcz M, Conrad J, Cornell JM, Dal LA, Edsjö J, Farmer B, Jackson P, Kahlhoefer F, Krislock A, Kvellestad A, McKay J, Mahmoudi F, Martinez GD, Putze A, Raklev A, Rogan C, Saavedra A, Savage C, Scott P, Serra N, Weniger C, White M. GAMBIT Collaboration:, et al. Eur Phys J C Part Fields. 2017;77(8):568. doi: 10.1140/epjc/s10052-017-5113-1. Epub 2017 Aug 23. Eur Phys J C Part Fields. 2017. PMID: 32009844 Free PMC article.
  • Upper bound on the dark matter total annihilation cross section.
    Beacom JF, Bell NF, Mack GD. Beacom JF, et al. Phys Rev Lett. 2007 Dec 7;99(23):231301. doi: 10.1103/PhysRevLett.99.231301. Epub 2007 Dec 5. Phys Rev Lett. 2007. PMID: 18233354
See all similar articles

References

    1. Greisen K. Phys. Rev. Lett. 1966;16:748. doi: 10.1103/PhysRevLett.16.748. - DOI
    1. Zatsepin GT, Kuzmin VA. JETP Lett. 1966;4:78.
    1. Berezinsky V, Kachelrieß M, Vilenkin A. Phys. Rev. Lett. 1997;79:4302. doi: 10.1103/PhysRevLett.79.4302. - DOI
    1. Kuzmin VA, Rubakov VA. Phys. Atom. Nucl. 1998;61:1028.
    1. Birkel M, Sarkar S. Astropart. Phys. 1998;9:297. doi: 10.1016/S0927-6505(98)00028-0. - DOI

LinkOut - more resources

Feedback