Likelihood-free inference via classification
- PMID: 31997856
- PMCID: PMC6956883
- DOI: 10.1007/s11222-017-9738-6
Likelihood-free inference via classification
Abstract
Increasingly complex generative models are being used across disciplines as they allow for realistic characterization of data, but a common difficulty with them is the prohibitively large computational cost to evaluate the likelihood function and thus to perform likelihood-based statistical inference. A likelihood-free inference framework has emerged where the parameters are identified by finding values that yield simulated data resembling the observed data. While widely applicable, a major difficulty in this framework is how to measure the discrepancy between the simulated and observed data. Transforming the original problem into a problem of classifying the data into simulated versus observed, we find that classification accuracy can be used to assess the discrepancy. The complete arsenal of classification methods becomes thereby available for inference of intractable generative models. We validate our approach using theory and simulations for both point estimation and Bayesian inference, and demonstrate its use on real data by inferring an individual-based epidemiological model for bacterial infections in child care centers.
Keywords: Approximate Bayesian computation; Generative models; Intractable likelihood; Latent variable models; Simulator-based models.
© The Author(s) 2017.
Figures
Similar articles
-
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.Elife. 2021 Apr 6;10:e65074. doi: 10.7554/eLife.65074. Elife. 2021. PMID: 33821788 Free PMC article.
-
A practical guide to pseudo-marginal methods for computational inference in systems biology.J Theor Biol. 2020 Jul 7;496:110255. doi: 10.1016/j.jtbi.2020.110255. Epub 2020 Mar 26. J Theor Biol. 2020. PMID: 32223995 Review.
-
On predictive inference for intractable models via approximate Bayesian computation.Stat Comput. 2023;33(2):42. doi: 10.1007/s11222-022-10163-6. Epub 2023 Feb 9. Stat Comput. 2023. PMID: 36785730 Free PMC article.
-
Fundamentals and Recent Developments in Approximate Bayesian Computation.Syst Biol. 2017 Jan 1;66(1):e66-e82. doi: 10.1093/sysbio/syw077. Syst Biol. 2017. PMID: 28175922 Free PMC article.
-
Challenges in Species Tree Estimation Under the Multispecies Coalescent Model.Genetics. 2016 Dec;204(4):1353-1368. doi: 10.1534/genetics.116.190173. Genetics. 2016. PMID: 27927902 Free PMC article. Review.
Cited by
-
Parameter Estimation of Platelets Deposition: Approximate Bayesian Computation With High Performance Computing.Front Physiol. 2018 Aug 20;9:1128. doi: 10.3389/fphys.2018.01128. eCollection 2018. Front Physiol. 2018. PMID: 30177886 Free PMC article.
-
Classifying evolutionary forces in language change using neural networks.Evol Hum Sci. 2020 Oct 16;2:e50. doi: 10.1017/ehs.2020.52. eCollection 2020. Evol Hum Sci. 2020. PMID: 37588365 Free PMC article.
-
Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.Elife. 2021 Apr 6;10:e65074. doi: 10.7554/eLife.65074. Elife. 2021. PMID: 33821788 Free PMC article.
-
Reducing Uncertainty Through Mutual Information in Structural and Systems Biology.ArXiv [Preprint]. 2024 Jul 11:arXiv:2407.08612v1. ArXiv. 2024. PMID: 39040647 Free PMC article. Preprint.
-
Scalable machine learning-assisted model exploration and inference using Sciope.Bioinformatics. 2021 Apr 19;37(2):279-281. doi: 10.1093/bioinformatics/btaa673. Bioinformatics. 2021. PMID: 32706854 Free PMC article.
References
-
- Barthelmé S, Chopin N. The Poisson transform for unnormalised statistical models. Stat. Comput. 2015;25(4):767–780. doi: 10.1007/s11222-015-9559-4. - DOI
-
- Beaumont MA. Approximate Bayesian computation in evolution and ecology. Ann. Rev. Ecol. Evol. Syst. 2010;41(1):379–406. doi: 10.1146/annurev-ecolsys-102209-144621. - DOI
LinkOut - more resources
Full Text Sources