Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug;47(9):2113-2122.
doi: 10.1007/s00259-020-04698-x. Epub 2020 Jan 31.

Imaging phenotype using 18F-fluorodeoxyglucose positron emission tomography-based radiomics and genetic alterations of pancreatic ductal adenocarcinoma

Affiliations

Imaging phenotype using 18F-fluorodeoxyglucose positron emission tomography-based radiomics and genetic alterations of pancreatic ductal adenocarcinoma

Chae Hong Lim et al. Eur J Nucl Med Mol Imaging. 2020 Aug.

Erratum in

Abstract

Purpose: This study aimed to determine if major gene mutations including in KRAS, SMAD4, TP53, and CDKN2A were related to imaging phenotype using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)-based radiomics in patients with pancreatic ductal adenocarcinoma (PDAC).

Methods: Data on 48 PDAC patients with pretreatment FDG PET/CT who underwent genomic analysis of their tumor tissue were retrospectively analyzed. A total of 35 unique quantitative radiomic features were extracted from PET images, including imaging phenotypes such as pixel intensity, shape, and textural features. Targeted exome sequencing using a customized cancer panel was used for genomic analysis. To assess the predictive performance of genetic alteration using PET-based radiomics, areas under the receiver operating characteristic curve (AUC) were used.

Results: Mutation frequencies were KRAS 87.5%, TP53 70.8%, SMAD4 25.0%, and CDKN2A 18.8%. KRAS gene mutations were significantly associated with low-intensity textural features, including long-run emphasis (AUC = 0.806), zone emphasis (AUC = 0.794), and large-zone emphasis (AUC = 0.829). SMAD4 gene mutations showed significant relationships with standardized uptake value skewness (AUC = 0.727), long-run emphasis (AUC = 0.692), and high-intensity textural features such as run emphasis (AUC = 0.775), short-run emphasis (AUC = 0.736), zone emphasis (AUC = 0.750), and short-zone emphasis (AUC = 0.725). No significant associations were seen between the imaging phenotypes and genetic alterations in TP53 and CDKN2A.

Conclusion: Genetic alterations of KRAS and SMAD4 had significant associations with FDG PET-based radiomic features in PDAC. PET-based radiomics may help clinicians predict genetic alteration status in a noninvasive way.

Keywords: FDG PET/CT; Gene mutation; Genetic alteration; Pancreatic cancer; Radiomics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources