Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Feb 17;59(4):2548-2561.
doi: 10.1021/acs.inorgchem.9b03476. Epub 2020 Feb 4.

Bioinspired CNP Iron(II) Pincers Relevant to [Fe]-Hydrogenase (Hmd): Effect of Dicarbonyl Versus Monocarbonyl Motifs in H 2 Activation and Transfer Hydrogenation

Affiliations

Bioinspired CNP Iron(II) Pincers Relevant to [Fe]-Hydrogenase (Hmd): Effect of Dicarbonyl Versus Monocarbonyl Motifs in H 2 Activation and Transfer Hydrogenation

Zhu-Lin Xie et al. Inorg Chem. .

Abstract

A set of bioinspired carbamoyl CNP pincer complexes are reported that are relevant to [Fe]-hydrogenase (Hmd). The dicarbonyl species [(CNHNNHPR2)Fe(CO)2I] [R = Ph, 1; R = iPr, 2] undergoes ligand deprotonation, resulting in the dearomatized complexes of formulas [(CNHNN=PR2)Fe(CO)2] (5 and 6). The crystal structure and 1H{31P} NMR spectroscopy of the iodide-bound dearomatized species [Na(18-crown-6)][(CNHNN=PPh2)Fe(CO)2I] (7) showed that the deprotonated moiety was the phosphoramine N(H) linkage. Separately, the monocarbonyl complexes [(CNHNNHPR2)Fe(CO)(MeCN)2](BF4) (8 and 9) synthesized, as well as deprotonated and dearomatized in similar fashion. Reactivity studies revealed that the parent dicarbonyl complexes require more forceful conditions for H2 activation, compared with the monocarbonyl complexes. The ligand backbone was not found to participate in H2 activation and H2 → hydride transfer to an organic substrate was not observed in either case. Density functional theory calculations revealed that the higher reactivity of the monocarbonyl complex in H2 splitting could be attributed to its higher affinity for H2. This behavior is attributed to two key points related to the requisite dπ(Fe) → σ*(H2) back-bonding interaction in a conventional M-H2 Kubas interaction: (i) generally, the weaker π donor capacity of the dicarbonyls, and (ii) specifically, the detrimental effect of a strongly π acidic CO ligand (versus weakly π acidic MeCN ligand) trans to the H2 activation site. The higher reactivity of the monocarbonyl complex is also evidenced by the catalytic transfer hydrogenation by monocarbonyl 8, whereas dicarbonyl 1 was ineffective. Overall, the results suggest that Nature uses the dicarbonyl motif in [Fe]-hydrogenase to diminish the interaction between the Fe center and dihydrogen, thereby preventing premature H2 activation prior to substrate (H4MPT+) binding and any resulting nonspecific hydride transfer reactivity.

Similar articles

See all similar articles

LinkOut - more resources

Feedback