Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator
- PMID: 32034607
- PMCID: PMC7154025
- DOI: 10.1007/s10439-020-02466-4
Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator
Abstract
Computer modeling and simulation is a powerful tool for assessing the performance of medical devices such as bioprosthetic heart valves (BHVs) that promises to accelerate device design and regulation. This study describes work to develop dynamic computer models of BHVs in the aortic test section of an experimental pulse-duplicator platform that is used in academia, industry, and regulatory agencies to assess BHV performance. These computational models are based on a hyperelastic finite element extension of the immersed boundary method for fluid-structure interaction (FSI). We focus on porcine tissue and bovine pericardial BHVs, which are commonly used in surgical valve replacement. We compare our numerical simulations to experimental data from two similar pulse duplicators, including a commercial ViVitro system and a custom platform related to the ViVitro pulse duplicator. Excellent agreement is demonstrated between the computational and experimental results for bulk flow rates, pressures, valve open areas, and the timing of valve opening and closure in conditions commonly used to assess BHV performance. In addition, reasonable agreement is demonstrated for quantitative measures of leaflet kinematics under these same conditions. This work represents a step towards the experimental validation of this FSI modeling platform for evaluating BHVs.
Keywords: Bovine pericardial valve; Finite element method; Immersed boundary method; Porcine aortic valve.
Figures
Similar articles
-
Bioprosthetic aortic valve diameter and thickness are directly related to leaflet fluttering: Results from a combined experimental and computational modeling study.JTCVS Open. 2021 Jun;6:60-81. doi: 10.1016/j.xjon.2020.09.002. Epub 2020 Sep 21. JTCVS Open. 2021. PMID: 35211686 Free PMC article.
-
Simulating the time evolving geometry, mechanical properties, and fibrous structure of bioprosthetic heart valve leaflets under cyclic loading.J Mech Behav Biomed Mater. 2021 Nov;123:104745. doi: 10.1016/j.jmbbm.2021.104745. Epub 2021 Aug 19. J Mech Behav Biomed Mater. 2021. PMID: 34482092 Free PMC article.
-
Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.Cardiovasc Eng Technol. 2016 Dec;7(4):374-388. doi: 10.1007/s13239-016-0285-7. Epub 2016 Nov 14. Cardiovasc Eng Technol. 2016. PMID: 27844463 Free PMC article.
-
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.Cardiovasc Eng Technol. 2016 Dec;7(4):309-351. doi: 10.1007/s13239-016-0276-8. Epub 2016 Aug 9. Cardiovasc Eng Technol. 2016. PMID: 27507280 Free PMC article. Review.
-
Computational methods for the aortic heart valve and its replacements.Expert Rev Med Devices. 2017 Nov;14(11):849-866. doi: 10.1080/17434440.2017.1389274. Epub 2017 Oct 23. Expert Rev Med Devices. 2017. PMID: 28980492 Free PMC article. Review.
Cited by
-
Semi-Automated Construction of Patient-Specific Aortic Valves from Computed Tomography Images.Ann Biomed Eng. 2023 Jan;51(1):189-199. doi: 10.1007/s10439-022-03075-z. Epub 2022 Oct 8. Ann Biomed Eng. 2023. PMID: 36209266 Free PMC article.
-
Biomechanics of Transcatheter Aortic Valve Replacement Complications and Computational Predictive Modeling.Struct Heart. 2022 Jun 3;6(2):100032. doi: 10.1016/j.shj.2022.100032. eCollection 2022 Jun. Struct Heart. 2022. PMID: 37273734 Free PMC article. Review.
-
Credibility assessment of in silico clinical trials for medical devices.PLoS Comput Biol. 2024 Aug 8;20(8):e1012289. doi: 10.1371/journal.pcbi.1012289. eCollection 2024 Aug. PLoS Comput Biol. 2024. PMID: 39116026 Free PMC article. Review.
-
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.J Comput Phys. 2022 May 15;457:111042. doi: 10.1016/j.jcp.2022.111042. Epub 2022 Feb 9. J Comput Phys. 2022. PMID: 35300097 Free PMC article.
-
Influence of Polymer Stiffness and Geometric Design on Fluid Mechanics in Tissue-Engineered Pulmonary Valve Scaffolds.Ann Biomed Eng. 2024 Mar;52(3):575-587. doi: 10.1007/s10439-023-03401-z. Epub 2023 Nov 7. Ann Biomed Eng. 2024. PMID: 37935910
References
-
- Aazami MH, Salehi M. The Arantius nodule: a ‘stress-decreasing effect’. J. Heart Valve Dis. 2005;14:565–566. - PubMed
-
- Arsalan M, Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 2016;13:360–367. - PubMed
-
- ASME V&V 40-2018. Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices, 2018.
-
- Balay, S., S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Users Manual. Technical Report ANL-95/11-Revision 3.10. Argonne National Laboratory, 2018.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
