Synthesis and in vitro investigation of novel cytotoxic pyrimidine and pyrazolopyrimidne derivatives showing apoptotic effect

Bioorg Chem. 2020 Mar:96:103621. doi: 10.1016/j.bioorg.2020.103621. Epub 2020 Jan 24.

Abstract

A series of novel derivatives of hydrazinylpyrimidines, pyrazolylpyrimidines and 3-amino[3,4-d]pyrazolopyrimidines have been synthesized and tested for their in vitro cytotoxic activity against 60 tumor cell lines by NCI. The in vitro cytotoxic IC50 values for the most active compounds were determined against the colon-KM12 cell line (5d, 7c and 7d), breast-MCF-7 (6a) and melanoma-MDA-MB-435 (6h) using 5-fluorouracil (5-FU) as a positive control. Derivatives 5d and 7c were found to be the most potent derivatives against KM12 cell line (IC50 = 1.73 and 1.21 µM, respectively) with a high selectivity index (SI) (18.82 and 35.49, respectively) compared to 5-FU (IC50 = 12.26 µM, SI = 1.93). Compounds 5d and 7c were further investigated for their apoptotic behavior in KM12 cell line. The investigations showed the up-regulation of caspase 3/9 and the pro-apoptotic factor Bax. On the other hand, the expression of the anti-apoptotic factor Bcl-2, was down-regulated, as well as its inhibition at a nanomolar concentration. Furthermore, the apoptotic effect for derivatives 5d and 7c in KM12 cells was detected using annexin V-FITC staining method.

Keywords: Apoptosis; Cytotoxicity; Pyrazolopyrimidine hybrids; Pyrimidine based hybrids.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Drug Screening Assays, Antitumor
  • Humans
  • Models, Molecular
  • Neoplasms / drug therapy
  • Neoplasms / metabolism
  • Pyrazoles / chemical synthesis
  • Pyrazoles / chemistry*
  • Pyrazoles / pharmacology*
  • Pyrimidines / chemical synthesis
  • Pyrimidines / chemistry*
  • Pyrimidines / pharmacology*

Substances

  • Antineoplastic Agents
  • Pyrazoles
  • Pyrimidines