Hippocampal microstructural architecture and surgical outcome: Hippocampal diffusivity could predict seizure relapse

Seizure. 2020 Jan 26:76:84-88. doi: 10.1016/j.seizure.2020.01.006. Online ahead of print.

Abstract

Purpose: Our aim was to study the microstructural architecture of the contralateral hippocampus to the affected side in patients with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) and its relation with surgical outcome.

Method: We included 33 consecutive patients evaluated in our epilepsy surgery program during a five-year period. They underwent a presurgical MRI with volumetric T1 and diffusion weighted sequences. 22 patients with TLE-HS (13 women, 12 right TLE-HS) were finally selected. Median follow-up after surgery was 6.25 years (4.5-8.83 years). We segmented the hippocampal subfields of the contralateral hippocampus using FreeSurfer and calculated the fractional anisotropy (FA) and the mean diffusivity (MD) of each subfield. We also scanned 18 healthy age-matched controls.

Results: After surgery, 50 % of the patients (n = 11) remained seizure-free (SF) following surgery. Comparing non-SF to SF patients, the MD showed increased values of the CA1 (p = 0.035), the molecular layer (p = 0.010) and the dentate gyrus (p = 0.041) in the healthy hippocampus. Using a cut-off point for a survival analysis, we found that patients with lower values of MD of the molecular layer and the CA1 remained SF during long-term post-operative follow-up (p < 0.0001).

Conclusions: The contralateral hippocampal internal microstructure may have be implicated in post-surgery seizure freedom in patients with TLE-HS.

Keywords: Diffusion; Seizures; Subfields.