Precise evaluation of tissue culture-induced variation during optimisation of in vitro regeneration regime in barley

Plant Mol Biol. 2020 May;103(1-2):33-50. doi: 10.1007/s11103-020-00973-5. Epub 2020 Feb 11.

Abstract

The Taguchi method and metAFLP analysis were used to optimise barley regenerants towards maximum and minimum levels of tissue culture-induced variation. The subtle effects of symmetric and asymmetric methylation changes in regenerants were identified. Plant tissue cultures (PTCs) provide researchers with unique materials that accelerate the development of new breeding cultivars and facilitate studies on off-type regenerants. The emerging variability of regenerants derived from PTCs may have both genetic and epigenetic origins, and may be desirable or degrade the value of regenerated plants. Thus, it is crucial to determine how the PTC variation level can be controlled. The easiest way to manipulate total tissue culture-induced variation (TTCIV) is to utilise appropriate stress factors and suitable medium components. This study describes the optimisation of in vitro tissue culture-induced variation in plant regenerants derived from barley anther culture, and maximizes and minimizes regenerant variation compared with the source explants. The approach relied on methylation amplified fragment length polymorphism (metAFLP)-derived TTCIV characteristics, which were evaluated in regenerants derived under distinct tissue culture conditions and analysed via Taguchi statistics. The factors that may trigger TTCIV included CuSO4, AgNO3 and the total time spent on the induction medium. The donor plants prepared for regeneration purposes had 5.75% and 2.01% polymorphic metAFLP loci with methylation and sequence changes, respectively. The level of TTCIV (as the sum of all metAFLP characteristics analyzed) identified in optimisation and verification experiments reached 7.51 and 10.46%, respectively. In the trial designed to produce a minimum number of differences between donor and regenerant plants, CuSO4 and AgNO3 were more crucial than time, which was not a significant factor. In the trial designed to produce a maximum number of differences between donor and regenerant plants, all factors had comparable impact on variation. The Taguchi method reduced the time required for experimental trials compared with a grid method and suggested that medium modifications were required to control regenerant variation. Finally, the effects of symmetric and asymmetric methylation changes on regenerants were identified using novel aspects of the metAFLP method developed for this analysis.

MeSH terms

  • DNA Methylation
  • DNA, Plant / metabolism
  • Genetic Variation
  • Hordeum / genetics
  • Hordeum / physiology*
  • Regeneration
  • Tissue Culture Techniques*

Substances

  • DNA, Plant