Fully Printed PEDOT:PSS-based Temperature Sensor with High Humidity Stability for Wireless Healthcare Monitoring

Sci Rep. 2020 Feb 12;10(1):2467. doi: 10.1038/s41598-020-59432-2.


Facile fabrication and high ambient stability are strongly desired for the practical application of temperautre sensor in real-time wearable healthcare. Herein, a fully printed flexible temperature sensor based on cross-linked poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was developed. By introducing the crosslinker of (3-glycidyloxypropyl)trimethoxysilane (GOPS) and the fluorinated polymer passivation (CYTOP), significant enhancements in humidity stability and temperature sensitivity of PEDOT:PSS based film were achieved. The prepared sensor exhibited excellent stability in environmental humidity ranged from 30% RH to 80% RH, and high sensitivity of -0.77% °C-1 for temperature sensing between 25 °C and 50 °C. Moreover, a wireless temperature sensing platform was obtained by integrating the printed sensor to a printed flexible hybrid circuit, which performed a stable real-time healthcare monitoring.

Publication types

  • Research Support, Non-U.S. Gov't