Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states
- PMID: 32052350
- PMCID: PMC7556740
- DOI: 10.1007/s10822-020-00280-7
Standard state free energies, not pKas, are ideal for describing small molecule protonation and tautomeric states
Abstract
The pKa is the standard measure used to describe the aqueous proton affinity of a compound, indicating the proton concentration (pH) at which two protonation states (e.g. A- and AH) have equal free energy. However, compounds can have additional protonation states (e.g. AH2+), and may assume multiple tautomeric forms, with the protons in different positions (microstates). Macroscopic pKas give the pH where the molecule changes its total number of protons, while microscopic pKas identify the tautomeric states involved. As tautomers have the same number of protons, the free energy difference between them and their relative probability is pH independent so there is no pKa connecting them. The question arises: What is the best way to describe protonation equilibria of a complex molecule in any pH range? Knowing the number of protons and the relative free energy of all microstates at a single pH, ∆G°, provides all the information needed to determine the free energy, and thus the probability of each microstate at each pH. Microstate probabilities as a function of pH generate titration curves that highlight the low energy, observable microstates, which can then be compared with experiment. A network description connecting microstates as nodes makes it straightforward to test thermodynamic consistency of microstate free energies. The utility of this analysis is illustrated by a description of one molecule from the SAMPL6 Blind pKa Prediction Challenge. Analysis of microstate ∆G°s also makes a more compact way to archive and compare the pH dependent behavior of compounds with multiple protonatable sites.
Keywords: Multiprotic; Protonation state; SAMPL6; Tautomer; pH titration; pKa.
Figures
Similar articles
-
pKa measurements for the SAMPL6 prediction challenge for a set of kinase inhibitor-like fragments.J Comput Aided Mol Des. 2018 Oct;32(10):1117-1138. doi: 10.1007/s10822-018-0168-0. Epub 2018 Nov 7. J Comput Aided Mol Des. 2018. PMID: 30406372 Free PMC article.
-
Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions.J Comput Aided Mol Des. 2021 Feb;35(2):131-166. doi: 10.1007/s10822-020-00362-6. Epub 2021 Jan 4. J Comput Aided Mol Des. 2021. PMID: 33394238 Free PMC article.
-
SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies.J Comput Aided Mol Des. 2018 Oct;32(10):1203-1216. doi: 10.1007/s10822-018-0138-6. Epub 2018 Aug 6. J Comput Aided Mol Des. 2018. PMID: 30084080 Free PMC article.
-
Computation of pH-dependent binding free energies.Biopolymers. 2016 Jan;105(1):43-9. doi: 10.1002/bip.22702. Biopolymers. 2016. PMID: 26202905 Free PMC article. Review.
-
pK(a) values and redox potentials of proteins. What do they mean?Biol Chem. 2013 May;394(5):611-9. doi: 10.1515/hsz-2012-0329. Biol Chem. 2013. PMID: 23362202 Review.
Cited by
-
Expanded ensemble predictions of absolute binding free energies in the SAMPL9 host-guest challenge.Phys Chem Chem Phys. 2023 Dec 6;25(47):32393-32406. doi: 10.1039/d3cp02197a. Phys Chem Chem Phys. 2023. PMID: 38009066
-
Thermodynamically consistent determination of free energies and rates in kinetic cycle models.Biophys Rep (N Y). 2023 Aug 2;3(3):100120. doi: 10.1016/j.bpr.2023.100120. eCollection 2023 Sep 13. Biophys Rep (N Y). 2023. PMID: 37638349 Free PMC article.
-
COSMO-RS blind prediction of distribution coefficients and aqueous pKa values from the SAMPL8 challenge.J Comput Aided Mol Des. 2023 Aug;37(8):395-405. doi: 10.1007/s10822-023-00514-4. Epub 2023 Jun 27. J Comput Aided Mol Des. 2023. PMID: 37365370
-
Thermodynamically consistent determination of free energies and rates in kinetic cycle models.bioRxiv [Preprint]. 2023 Aug 7:2023.04.08.536126. doi: 10.1101/2023.04.08.536126. bioRxiv. 2023. PMID: 37066357 Free PMC article. Updated. Preprint.
-
Improving Small Molecule pK a Prediction Using Transfer Learning With Graph Neural Networks.Front Chem. 2022 May 26;10:866585. doi: 10.3389/fchem.2022.866585. eCollection 2022. Front Chem. 2022. PMID: 35721000 Free PMC article.
References
-
- Czodrowski P (2012) Who cares for the protons? Bioorg Med Chem 20(18):5453. - PubMed
-
- Seybold PG, Shields GC (2015) Computational estimation of pKa values. Wiley Interdisciplinary Reviews: Computational Molecular Science 5(3):290
-
- Fraczkiewicz R, Lobell M, Goller AH, Krenz U, Schoenneis R, Clark RD, Hillisch A (2015) Best of both worlds: combining pharma data and state of the art modeling technology to improve in Silico pKa prediction. J Chem Inf Model 55(2):389. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
