Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;17(6):937-944.
doi: 10.1016/j.hrthm.2020.02.003. Epub 2020 Feb 10.

Clinical and functional reappraisal of alleged type 5 long QT syndrome: Causative genetic variants in the KCNE1-encoded minK β-subunit

Affiliations

Clinical and functional reappraisal of alleged type 5 long QT syndrome: Causative genetic variants in the KCNE1-encoded minK β-subunit

Ramin Garmany et al. Heart Rhythm. 2020 Jun.

Abstract

Background: KCNE1 loss-of-function variants cause type 5 long QT syndrome (LQT5). However, most alleged LQT5-causative KCNE1 variants were identified before the true rate of background genetic variation was appreciated fully.

Objective: The purpose of this study was to reassess the clinical and electrophysiological (EP) phenotypes associated with KCNE1 variants detected in a single-center LQTS cohort.

Methods: Retrospective analysis of 1026 LQTS patients was used to identify those individuals with isolated KCNE1 ultra-rare variants (minor allele frequency [MAF] <0.0004 in the Genome Aggregation Database [gnomAD]). After classification according to American College of Medical Genetics (ACMG) guidelines, variants of uncertain significance (VUS) were characterized in vitro using whole-cell patch-clamp technique. Lastly, the clinical phenotype observed in ACMG pathogenic/likely pathogenic (P/LP) KCNE1-positive individuals was assessed.

Results: Overall, 6 KCNE1 variants were identified in 38 of 1026 LQTS patients (3.7%). Based on existing data, 2 KCNE1 variants (p.Asp76Asn-KCNE1 and p.Arg98Trp-KCNE1) were classified as P/LP. Whereas the p.Ser28Leu-KCNE1 VUS conferred a loss-of-function EP phenotype (72% reduction in IKs current) and was upgraded to an LP variant, the 3 remaining KCNE1 VUS (p.Arg67Cys-KCNE1, p.Arg67His-KCNE1, p.Ser74Leu-KCNE1) were indistinguishable from wild type. Collectively, the phenotype observed in p.Ser28Leu-KCNE1-, p.Asp76Asn-KCNE1-, and p.Arg98Trp-KCNE1-positive individuals (n = 22) was relatively weak (91% asymptomatic; average QTc 444 ± 19 ms; 27% with a maladaptive QTc response during exercise/recovery).

Conclusion: This study indicates that p.Ser28Leu-KCNE1 may be an LQT5-causative substrate analogous to p.Asp76Asn-KCNE1 and p.Arg98Trp-KCNE1. However, the weak phenotype and cumulative gnomAD MAF (42/141,156) associated with these P/LP variants suggest LQT5/KCNE-LQTS may be a more common/weaker form of LQTS than anticipated previously.

Keywords: Genetics; Ion channels; Long QT syndrome; Phenotype; Sudden cardiac death.

PubMed Disclaimer

Similar articles

Cited by

Supplementary concepts

LinkOut - more resources