Effects of Directional Microphone and Noise Reduction on Subcortical and Cortical Auditory-Evoked Potentials in Older Listeners With Hearing Loss

Ear Hear. 2020 Sep/Oct;41(5):1282-1293. doi: 10.1097/AUD.0000000000000847.


Objectives: Understanding how signal processing influences neural activity in the brain with hearing loss is relevant to the design and evaluation of features intended to alleviate speech-in-noise deficits faced by many hearing aid wearers. Here, we examine whether hearing aid processing schemes that are designed to improve speech-in-noise intelligibility (i.e., directional microphone and noise reduction) also improve electrophysiological indices of speech processing in older listeners with hearing loss.

Design: The study followed a double-blind within-subjects design. A sample of 19 older adults (8 females; mean age = 73.6 years, range = 56-86 years; 17 experienced hearing aid users) with a moderate to severe sensorineural hearing impairment participated in the experiment. Auditory-evoked potentials associated with processing in cortex (P1-N1-P2) and subcortex (frequency-following response) were measured over the course of two 2-hour visits. Listeners were presented with sequences of the consonant-vowel syllable /da/ in continuous speech-shaped noise at signal to noise ratios (SNRs) of 0, +5, and +10 dB. Speech and noise stimuli were pre-recorded using a Knowles Electronics Manikin for Acoustic Research (KEMAR) head and torso simulator outfitted with hearing aids programmed for each listener's loss. The study aid programs were set according to 4 conditions: (1) omnidirectional microphone, (2) omnidirectional microphone with noise reduction, (3) directional microphone, and (4) directional microphone with noise reduction. For each hearing aid condition, speech was presented from a loudspeaker located at 1 m directly in front of KEMAR (i.e., 0° in the azimuth) at 75 dB SPL and noise was presented from a matching loudspeaker located at 1 m directly behind KEMAR (i.e., 180° in the azimuth). Recorded stimulus sequences were normalized for speech level across conditions and presented to listeners over electromagnetically shielded ER-2 ear-insert transducers. Presentation levels were calibrated to match the output of listeners' study aids.

Results: Cortical components from listeners with hearing loss were enhanced with improving SNR and with use of a directional microphone and noise reduction. On the other hand, subcortical components did not show sensitivity to SNR or microphone mode but did show enhanced encoding of temporal fine structure of speech for conditions where noise reduction was enabled.

Conclusions: These results suggest that auditory-evoked potentials may be useful in evaluating the benefit of different noise-mitigating hearing aid features.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Aged
  • Evoked Potentials, Auditory
  • Female
  • Hearing Aids*
  • Hearing Loss*
  • Hearing Loss, Sensorineural*
  • Humans
  • Male
  • Middle Aged
  • Noise
  • Speech Perception*