Strong Immune Responses Induced by Direct Local Injections of Modified mRNA-Lipid Nanocomplexes

Mol Ther Nucleic Acids. 2020 Mar 6;19:1098-1109. doi: 10.1016/j.omtn.2019.12.044. Epub 2020 Jan 16.

Abstract

In vitro transcribed mRNAs hold the promises of many medical applications in disease prevention and treatment, such as replacement or supplement of missing or inadequately expressed endogenous proteins and as preventive vaccines against infectious diseases, therapeutic vaccines, or other protein-based biopharmaceutics for cancer therapy. A safe and efficient delivery system for mRNA is crucial to the success of mRNA therapeutic applications. In this study, we report that InstantFECT, a liposome-based transfection reagent, can pack pseudouridine-incorporated mRNA into nanocomplexes that are highly efficient in mediating in vivo transfection in multiple organs after local delivery. High levels of expression of EGFP and luciferase reporters after intratumoral and intramuscular injections were observed, which lasted for up to 96 hrs. Immunogenicity of antigens encoded by mRNA delivered with nanocomplex was investigated by subcutaneous delivery of modified mRNAs encoding Staphylococcus aureus adenosine synthase A (AdsA) and a model tumor-associated antigen ovalbumin (OVA). Strong T cell responses were provoked by both mRNAs delivered. Therapeutic and protective treatment with the OVA mRNA-liposome nanocomplex significantly inhibited B16-OVA tumor progression and increased mouse survival. There was no sign of obvious toxicity related to the treatment both in tissue culture and in mice. An intravenous injection of the same dosage of the modified mRNA-lipid nanocomplex showed minimal transfection in major organs, indicating an excellent safety feature as the gene transfer occurred only at the injection sites, whereas intravenous (i.v.) injection with the same amount of mRNA complexed with a commercial transfection reagent Trans-IT showed luciferase expression in the spleen. In summary, InstantFECT cationic liposomes provide a safe and efficient in vivo locoregional delivery of mRNA and could be a useful tool for basic research and for the development of mRNA-based therapies.

Keywords: T- cell responses; cationic liposomal delivery; immunogenicity; locoregional delivery; mRNA therapy; nanocomplexes; vaccines.